Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:25:33.607Z Has data issue: false hasContentIssue false

Growth of diamond and diamond-like films using a low energy ion beam

Published online by Cambridge University Press:  31 January 2011

Y. P. Guo
Affiliation:
Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
K. L. Lam
Affiliation:
Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
K. M. Lui
Affiliation:
Materials Technology Research Centre, The Chinese University of Hong Kong, Shatin, and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
R. W. M. Kwok
Affiliation:
Department of Chemistry, The Chinese University of Hong Kong, Shatin, and Materials Technology Research Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
K. C. Hui
Affiliation:
Department of Chemistry, The Chinese University of Hong Kong, Shatin, and Materials Technology Research Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
Get access

Abstract

Ion beam deposition provides an additional control of ion beam energy over the chemical vapor deposition methods. We have used a low energy ion beam of hydrogen and carbon to deposit carbon films on Si(100) wafers. We found that graphitic films, amorphous carbon films, and oriented diamond microcrystallites could be obtained separatedly at different ion beam energies. The mechanism of the formation of the oriented diamond microcrystallites was suggested to include three components: strain release after ion bombardment, hydrogen passivation of sp3 carbon, and hydrogen etching. Such a process can be extended to the heteroepitaxial growth of diamond films.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aisenberg, S. and Chabot, R., J. Appl. Phys. 42, 2953 (1971).Google Scholar
2.Miyazawa, T., Misawa, S., Yoshida, S., and Gonda, S., J. Appl. Phys. 55, 188 (1984).CrossRefGoogle Scholar
3.Aksenov, I. I., Vakula, S. I., Padalka, V. G., Strel'nitskii, V. E., and Khoroshikh, V. M., Sov. Phys. Tech. Phys. 25, 1164 (1980).Google Scholar
4.Freeman, J. H., Temple, W., and Gard, G. A., Vacuum 34, 305 (1984).CrossRefGoogle Scholar
5.Moravec, T. J. and Drent, T. W., J. Vac. Sci. Technol. 18, 226 (1981).Google Scholar
6.Weissmantel, C., Bewilogua, K., Breuer, K., Dietrich, D., Ebersbach, U., Erier, H-J., Rau, B., and Reisse, G., Thin Solid Films 96, 31 (1982).Google Scholar
7.Sokolowski, M., Sokolowska, A., Michalski, A., Romanoski, Z., Rusek-Mazurek, A., and Woronikowski, M., Thin Solid Films 80, 249 (1981).CrossRefGoogle Scholar
8.Wagal, S. S., Juengerman, E. M., and Collins, C. B., J. Appl. Phys. 53, 187 (1988).Google Scholar
9.Seitz, F., Phys. Today 5, 6; (1952), S. Siegel, Phys. Rev. 75, 1823 (1949).Google Scholar
10.Lifshitz, Y., Diamond Relat. Mater. 5, 388 (1996).CrossRefGoogle Scholar
11.Banks, B. A. and Rutledge, S. K., J. Vac. Sci. Technol. 21, 807 (1996).CrossRefGoogle Scholar
12.Kulik, J., Lifshitz, Y., Lempert, G. D., Grossman, E., Rabalais, J. W., and Marton, D., Phys. Rev. B 52, 15 812 (1996).CrossRefGoogle Scholar
13.Lau, W. M., Bello, I., Feng, X., Huang, L. J., Qin, F., Yao, Z., Ren, Z., and Lee, S-T., J. Appl. Phys. 70, 5623 (1991).CrossRefGoogle Scholar
14.Cuomo, J. J., Pappas, D. L., Bruley, J., Doyle, J. P., and Saenger, K. L., J. Appl. Phys. 70, 1706 (1991).Google Scholar
15.Vora, H. and Moravec, T. J., J. Appl. Phys. 52, 6151 (1981).CrossRefGoogle Scholar
16.Weissmantel, C., Bewilogua, K., Dietrich, D., Erier, H-J., Hinneberg, H-J., Klose, S., Nowick, W., and Reisse, G., Thin Solid Films 72, 19 (1980).CrossRefGoogle Scholar
17.Spence, E. G., Schmidt, P. H., Joy, D. C., and Sansalone, F. J., Appl. Phys. Lett. 29, 118 (1976).Google Scholar
18.Deshpandey, C. V. and Bunshah, R. F., J. Vac. Sci. Technol. A 7, 2294 (1989).Google Scholar
19.Harris, S. J., Weiner, A. M., and Perry, T. A., Appl. Phys. Lett. 53, 1065 (1988).CrossRefGoogle Scholar
20.Goodwin, D. G., J. Appl. Phys. 74, 6888 (1993).Google Scholar
21.Belton, D. N., Harris, S. J., Schmieg, S. J., Weiner, A. U., and Perry, T. A., Appl. Phys. Lett. 54, 416 (1989).CrossRefGoogle Scholar
22.Gerstner, E. G., McKenzie, D. R., Puchert, M. K., Timbrell, P. Y., and Zou, J., J. Vac. Sci. Technol. A 13, 406 (1995).Google Scholar
23.Fink, J., Müller-Heinzerling, T., Pflüger, J., Scheerer, B., Dischler, B., Koidl, P., Bubenzer, A., and Sah, R. E., Phys. Rev. B 30, 4713 (1984).Google Scholar
24.Reinke, P., Kania, P., Oelhafen, P., and Guggenheim, R., Appl. Phys. Lett. 68, 22 (1996).CrossRefGoogle Scholar
25.Belton, D. N. and Schmieg, S. J., J. Vac. Sci. Technol. A 8, 2353 (1990).CrossRefGoogle Scholar
26.Goodman, C. H. L., Crystal Growth: Theory and Techniques (Plenum, London, 1974), Vol. 1.Google Scholar
27. The calculations were performed using Trim 95.06 with input data: diamond density − 3.515 g/cm3, target displacement energy −30 eV, and target binding energy − 2 eV.Google Scholar