Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T10:30:55.874Z Has data issue: false hasContentIssue false

Growth of CNxHy films by reactive magnetron sputtering of carbon in Ar/NH3 discharges

Published online by Cambridge University Press:  31 January 2011

H. Sjöström
Affiliation:
Department of Physics, Linköping University, S-581 83 Linköping, Sweden
W. Lanford
Affiliation:
University of Albany, Albany, New York 12222
B. Hjörvarson
Affiliation:
Department of Physics, Uppsala University, S-751 21 Uppsala, Sweden
K. Xing
Affiliation:
Department of Physics, Linköping University, S-581 83 Linköping, Sweden
J-E. Sundgren
Affiliation:
Department of Physics, Linköping University, S-581 83 Linköping, Sweden
Get access

Abstract

Results on hydrogenated carbon nitride (CNxHy) thin films grown by reactive magnetron sputtering in a mixed Ar/NH3 discharge are reported. Depending on the growth temperature (Ts) and negative substrate bias voltage (Vs), both the composition and the microstructure were altered. Using nuclear reaction analysis and resonant backscattering spectroscopy, the maximum N and H content were both 15 at. %. Both the hydrogen and nitrogen content of the films was found to decrease with increasing growth temperature. The results also show pronounced chemical resputtering effects, resulting in no net film growth for Vs > 75–100 V. X-ray photoelectron spectroscopy showed no signs of N bound to sp3 hybridized C. Also, the microstructure of the films was found to change with Ts. For Ts < 150 °C, a structure with crystalline clusters embedded in an “fullerene-like” matrix was observed by high-resolution transmission electron microscopy. Power-spectra obtained from the clusters could be identified with the cubic diamond structure. For Ts ≥ 300 °C, no crystalline clusters were found and the films had a homogeneous “fullerene-like” microstructure with strongly bent planes and closed shell-like features resembling bucky-onions. Evaluation of nanoindentation results from the homogeneous “fullerene-like” films gave hardness values between 7 and 11 GPa and elastic recoveries of 55–60%. This should be compared with hardness and elastic recoveries of 40–60 GPa and 85–90%, respectively, previously reported for on nonhydrogenated carbon nitride CNx films grown under the same conditions, but in pure N2 discharges.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cuomo, J. J., Leary, P. A., Yu, D., Reuter, W., and Frisch, M., J. Vac. Sci. Technol. 16, 299 (1979).CrossRefGoogle Scholar
2.Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989).Google Scholar
3.Niu, C., Lu, Y. Z. and Lieber, C. M., Science 261, 334 (1993).CrossRefGoogle Scholar
4.Song, H. W., Cui, F. Z., He, X. M., Li, W. Z., and Li, H. D., J. Phys.: Condens. Matter. 6, 6125 (1994).Google Scholar
5.Yu, K. M., Cohen, M. L., Haller, E. E., Hansen, W. L., Liu, A. Y., and Wu, I.C., Phys. Rev. B 49, 5034 (1994).Google Scholar
6.Rivière, J. P., Texier, D., Delafond, J., Jaouen, M., Mathé, E. L., and Chaumont, J., Mater. Lett. 22, 115 (1995).CrossRefGoogle Scholar
7.Fujimoto, F. and Ogata, K., Jpn. J. Appl. Phys., part 2 32, 420 (1993).Google Scholar
8.Kern, W. and Puotinen, D.A., RCA Reviews 31, 187 (1970).Google Scholar
9.McCaffrey, J. P., Microscopy Research and Technique 24, 180 (1993).CrossRefGoogle Scholar
10.Lanford, W. A., Nucl. Instrum. Methods B66, 65 (1992).Google Scholar
11.Davies, J. A., Almcida, F. J. D., Haugen, H. K., Siegele, R., Forster, J.S., and Jackman, T. E., Nucl. Instrum. Methods B85, 28 (1994).CrossRefGoogle Scholar
12.Qui, Y., Rice, A. P., and Tombrello, T. A., Nucl. Instrum. Methods B71, 324 (1992).CrossRefGoogle Scholar
13.Chu, W-K., Mayer, J.W., and Nicolet, M., Backscattering Spectrometry (Academic Press, New York, 1978).Google Scholar
14.Ziegler, J. F., Biersack, J.P., and Littmark, U., The Stopping and Ranges of Ions in Matter (Pergamon Press, New York, 1985).Google Scholar
15.Nilson, O., Björneholm, O., Tillborg, H., Hernnas, B., Guest, R. J., Sandell, A., and Ma°rtensson, N., Surf. Sci. 287/288, 758 (1993).CrossRefGoogle Scholar
16.Sjöström, H., Stafström, S., Boman, M., and Sundgren, J-E., Phys. Rev. Lett. 75, 1336 (1995).CrossRefGoogle Scholar
17.Sjöström, H., Hultman, L., Hainsworth, S. V., Page, T. F., Theunissen, G. S. A. M., and Sundgren, J-E., J. Vac. Sci. Technol. (in press).Google Scholar
18.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
19.Hainsworth, S. V., Bartlett, T., and Page, T. F., Thin Solid Films 236, 214 (1993).CrossRefGoogle Scholar
20.Sjöström, H., Ivanov, I., Johansson, M., Hultman, L., Sundgren, J-E., Hainsworth, S. V., Page, T. F., and Wallenberg, L. R., Thin Solid Films 246, 103 (1994).CrossRefGoogle Scholar
21.Lopez, S., Wong, M-S., and Sproul, W. D., J. Vac. Sci. Technol. A 13, 1644 (1995).Google Scholar
22.Todorov, S. S., Marton, D., Boyd, K. J., Al-Bayati, A. H., and Rabalais, J.W., J. Vac. Sci. Technol. A 12, 3192 (1994).CrossRefGoogle Scholar
23.Kang, E. T., Neoh, K. G., and Tan, K. L., Synthetic Metals 68, 141 (1995).Google Scholar
24.Zhang, Q. L., O'Brien, S. C. O., Heath, J. R., Liu, Y., Curl, R. F., Kroto, H. W., and Smalley, R. E., J. Phys. Chem. 90, 255 (1986).Google Scholar
25.Ugarte, D., Nature (London) 359, 707 (1992).CrossRefGoogle Scholar
26.Yara, T., Yuasa, M., Shimizu, M., Makita, H., Hatta, A., Suzuki, J-I., Ito, T., and Hiraki, A., Jpn. J. Appl. Phys. 33, 4404 (1994).Google Scholar
27.Troullier, N. and Martins, J.L., Phys. Rev. B 46, 1754 (1992).CrossRefGoogle Scholar
28.Kozlov, M. E., Hirabayashi, M., Nozaki, K., Tokumoto, M., and Ihara, H., Appl. Phys. Lett. 66, 1199 (1995).CrossRefGoogle Scholar