Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T18:52:14.579Z Has data issue: false hasContentIssue false

Growth, microstructure, charge transport, and transparency of random polycrystalline and heteroepitaxial metalorganic chemical vapor deposition-derived gallium–indium–oxide thin films

Published online by Cambridge University Press:  31 January 2011

Anchuan Wang
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Nikki L. Edleman
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Jason R. Babcock
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Tobin J. Marks*
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Melissa A. Lane
Affiliation:
Department of Electrical and Computer Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Paul R. Brazis
Affiliation:
Department of Electrical and Computer Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Carl R. Kannewurf
Affiliation:
Department of Electrical and Computer Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

Gallium–indium–oxide films (GaxIn2⊟xO3), where x = 0.0–1.1, were grown by low-pressure metalorganic chemical vapor deposition using the volatile metalorganic precursors In(dpm)3 and Ga(dpm)3 (dpm = 2,2,6,6-tetramethyl-3,5-heptanedionato). The films were smooth (root mean square roughness = 50–65 Å) with a homogeneously Ga-substituted, cubic In2O3 microstructure, randomly oriented on quartz or heteroepitaxial on (100) yttria-stabilized zirconia single-crystal substrates. The highest conductivity of the as-grown films was found at x = 0.12, with σ = 700 S/cm [n-type; carrier density = 8.1 × 1019 cm⊟3; mobility = 55.2 cm2/(V s); dσ/dT<0]. The optical transmission window of such films is considerably broader than that of Sn-doped In2O3, and the absolute transparency rival or exceeds that of the most transparent conductive oxides known. Reductive annealing, carried out at 400–425 C° in a flowing gas mixture of H2 (4%) and N2, resulted in increased conductivity (σ 1400 S/cm; n-type), carrier density (1.4 × 1020 cm⊟3), and mobility as high as 64.6 cm2/(V s), with little loss in optical transparency. No significant difference in carrier mobility or conductivity is observed between randomly oriented and heteroepitaxial films, arguing in combination with other data that carrier scattering effects at high-angle grain/domain boundaries play a minor role in the conductivity mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ginley, D.S. and Bright, C., Eds., MRS Bull. 25, 15 (2000) and articles therein.Google Scholar
2.Granqvist, C.G., Appl. Phys. A 52, 83 (1991).CrossRefGoogle Scholar
3.Jarzebski, Z.M., Phys. Status Solidi A 71, 13 (1982).Google Scholar
4.Wang, R., Sleight, A.W., Platzer, R., and Gardner, J.A., J. Solid State Chem. 122, 166 (1996).CrossRefGoogle Scholar
5.Wang, R., King, L.H., and Sleight, A.W., J. Mater. Res. 11, 1659(1996).Google Scholar
6.Minami, T., Kakumu, T., and Takata, S., J. Vac. Sci. Technol., A 14, 1704 (1996).CrossRefGoogle Scholar
7.Minami, T., Kakumu, T., Shimokawa, K., and Takata, S., Thin Solid Films 317, 318 (1998).CrossRefGoogle Scholar
8.Omata, T., Ueda, N., Hikuma, N., Ueda, K., Mizoguchi, H., Hashimoto, T., and Kawazoe, H., Appl. Phys. Lett. 62, 499 (1993).Google Scholar
9.Palmer, G.B., Poeppelmeier, K.R., and Mason, T.O., Chem. Mater. 9, 3121 (1997).Google Scholar
10.Edwards, D.D., Mason, T.O., Sinkler, W., Marks, L.D., Poeppelmeier, K.R., Hu, Z., and Jorgensen, J.D., J. Solid State Chem. 150, 294 (2000).CrossRefGoogle Scholar
11.Edwards, D.D. and Mason, T.O., J. Am. Ceram. Soc. 81, 3285 (1998).CrossRefGoogle Scholar
12.Edwards, D.D., Mason, T.O., Sinkler, W., Marks, L.D., Goutenoire, F., and Poeppelmeier, K.R., J. Solid State Chem. 140, 242 (1998).Google Scholar
13.Edwards, D.D., Mason, T.O., Goutenoire, F., and Poeppelmeier, K.R., Appl. Phys. Lett. 70, 1706 (1997).Google Scholar
14.Edwards, D.D., Folkins, P.E., and Mason, T.O., J. Am. Ceram. Soc. 80, 253 (1997).Google Scholar
15.Phillips, J.M., Cava, R.J., Thomas, G.A., Carter, S.A., Kwo, J., Siegrist, T., Krajewski, J.J., Marshall, J.H., Peck, W.F. Jr., and Rapkine, D.H., Appl. Phys. Lett. 67, 2246 (1995).Google Scholar
16.Phillips, J.M., Kwo, J., Thomas, G.A., Carter, S.A., Cava, R.J., Huo, S.Y., Krajewski, J.J. Jr., Marshall, J.H., Peck, W.F., Rapkine, D.H., and Dover, R.B. van, Appl. Phys. Lett. 65, 115 (1994).CrossRefGoogle Scholar
17.Cava, R.J., Phillips, J.M., Kwo, J., Thomas, G.A., Carter, S.A., Krajewski, J.J., Peck, W.F. Jr., Marshall, J.H., and Rapkine, D.H., Appl. Phys. Lett. 64, 2071 (1994).Google Scholar
18.Minami, T., Takata, S., and Kakumu, T.J., J. Vac. Sci. Technol., A 14, 1689 (1996).Google Scholar
19.Minami, T., Takeda, Y., Kakumu, T., Takata, S., and Fukuda, I., J. Vac. Sci. Technol., A 15, 958 (1997).Google Scholar
20.Gordon, R.G., MRS Bull. 25, 52 (2000).Google Scholar
21.Weiher, R.L., J. Appl. Phys. 33, 2834 (1962).Google Scholar
22.Groth, R., Phys. Status Solidi 14, 69 (1966).Google Scholar
23.Kamei, M., Yagami, T., Takaki, S., and Shigesato, Y., Appl. Phys. Lett. 64, 2712 (1994).Google Scholar
24.Tarsa, E.J., English, J.H., and Speck, J.S., Appl. Phys. Lett. 62, 2332 (1993).Google Scholar
25.Kamei, M., Shigesato, Y., Yasui, I., Taga, N., and Takaki, S., J. NonCryst. Solids 218, 267 (1997).Google Scholar
26.Taga, N., Odaka, H., Shigesato, Y., Yasui, I., Kamei, M., and Haynes, T.E., J. Appl. Phys. 80, 978 (1996).Google Scholar
27.Kwok, H.S., Sun, X.W., and Kim, D.H., Thin Solid Films 335, 299 (1998).Google Scholar
28.Ohta, H., Orita, M., Hirano, M., Tanji, H., Kawazoe, H., and Hosono, H., Appl. Phys. Lett. 76, 2740 (2000).Google Scholar
29.Yan, M., Lane, M., Kannewurf, C.R., and Chang, R.P.H., Appl. Phys. Lett. 78, 2342 (2001).Google Scholar
30.Schulz, D.L. and Marks, T.J., in CVD of Non-Metals, edited by Rees, W.S. Jr., (VCH Publishers, New York, 1996), pp. 39150.Google Scholar
31.Wang, A., Dai, J.Y., Cheng, J.Z., Chudzik, M.P., Marks, T.J., Chang, R.P.H., and Kannewurf, C.R., Appl. Phys. Lett. 73, 327 (1998).Google Scholar
32.Wang, A., Babcock, J.R., Edleman, N.L., Metz, A.W., Lane, M.A., Asahi, R., Dravid, V.P., Kannewurf, C.R., Freeman, A.J., and Marks, T.J., Proc. Nat. Acad. Sci. U.S.A. 98, 7113 (2001).Google Scholar
33.Reported in part: Wang, A., Edleman, N.L., Babcock, J.R., Marks, T.J., Lane, M.A., Brazis, P.W., and Kannewurf, C.R., in Infrared Applications of Semiconductors III, edited by Stadler, B.J.H., Manasreh, M.O., Ferguson, I., and Zhang, Y-H. (Mater. Res. Soc. Symp. Proc. 607, Warrendale, PA, 2000), p. 345.Google Scholar
34.Wang, A., Cheng, S.C., Belot, J.A., McNeely, R.J., Cheng, J., Marcordes, B., and Marks, T.J., in Chemical Aspects of Electronic Ceramics Processing, edited by Kumta, P.N., Hepp, A.F., Beach, D.B., Arkles, B., and Sullivan, J.J. (Mater. Res. Soc. Symp. Proc. 495, Warrendale, PA, 1998), p. 3.Google Scholar
35.Tahar, R.B.H., Ban, T., Ohya, Y., and Takahashi, Y.J., Appl. Phys. 83, 2631 (1998).Google Scholar
36.Mason, T.O., Gonzalez, G.B., Kammler, D.R., Mansourian-Hadavi, N., and Ingram, B.J., Thin Solid Films 411, 106 (2002).Google Scholar
37.Ryabova, L.A., Salun, V.S., and Serbinov, L.A., Thin Solid Films 92, 327 (1982).CrossRefGoogle Scholar
38.Burstein, E., Phys. Rev. 93, 632 (1954).Google Scholar
39.Chopra, K.L., Major, S., and Pandya, D.K., Thin Solid Films 102, 1 (1983).CrossRefGoogle Scholar
40.Marezio, M., Acta Crystallogr. 20, 723 (1966).Google Scholar
41.Cui, J., Wang, A., Edleman, N.L., Ni, J., Lee, P., Armstrong, N.R., and Marks, T.J., Adv. Mater. 13, 1476 (2001).Google Scholar
42.Milliron, D.J., Hill, I.G., Shen, C., Kahn, A., and Schwartz, J., J. Appl. Phys. 87, 572 (2000).CrossRefGoogle Scholar
43.Ishii, H., Sugiyama, K., Ito, E., and Seti, K., Adv. Mater. 11, 605 (1999).Google Scholar
44.Tahar, R.B.H., Ban, T., Ohya, Y., and Takahashi, Y.J., Appl. Phys. 82, 865 (1997).CrossRefGoogle Scholar
45.Zhang, D.H. and Ma, H.L., Appl. Phys. A 62, 487 (1996).CrossRefGoogle Scholar
46.Shigesato, Y. and Paine, D.C., Appl. Phys. Lett. 62, 1268 (1993).Google Scholar
47.Wang, A., Edleman, N.L., Babcock, J.R., Marks, T.J., Lane, M.A., Brazis, P.W., and Kannewurf, C.R. (manuscript in preparation).Google Scholar