Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T18:16:28.104Z Has data issue: false hasContentIssue false

Grain boundary dislocation interactions in nanocrystalline Al2O3

Published online by Cambridge University Press:  03 March 2011

Sampa Dhabal*
Affiliation:
Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur – 721302, India
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To explore the mechanism of grain growth, gas phase synthesized nanopowders of Al2O3 were heated in ambient conditions at elevated temperatures. Transmission electron microscopy and x-ray line broadening studies were performed to determine the microstructural parameters like crystallite size and root-mean-square (rms) strain. Increase in crystallite size with a decrease in dislocation density was observed for annealing the powder at higher temperatures. From a detailed analysis of the dislocation interactions, it was shown that polygonization like interaction of dislocations is the primary cause for such growth. A model for such growth is proposed. From the measured values of the rms strain and crystallite size at different temperatures, the ratio of the bulk to the shear modulus was determined. The measured ratio was found, within experimental uncertainties, to be close to the bulk value.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hahn, H., Logas, J., and Averback, R.S.: Sintering characteristics of nanocrystalline TiO2. J. Mater. Res. 5, 609 (1990).CrossRefGoogle Scholar
2Averback, R.S., Höfler, H.J., Hahn, H., and Logas, J.C.: Sintering and grain growth in nanocrystalline ceramics. Nanostruct. Mater. 1, 173 (1992).Google Scholar
3Mayo, M.J. and Hague, D.C.: Porosity–grain growth relationship in the sintering of nanocrystalline ceramics. Nanostruct. Mater. 3, 43 (1993).Google Scholar
4Panda, P.C., Wang, J., and Raj, R.: Sinter-forging characteristics of fine grained zirconia. J. Am. Ceram. Soc. 71, C507 (1988).CrossRefGoogle Scholar
5Theunissen, G.S.A.M., Winnubst, A.J.A., and Burggraaf, A.J.: Sintering kinetics and microstructure development of nanoscale Y-TZP ceramics. J. Eur. Ceram. Soc. 11, 315 (1993).Google Scholar
6Mayo, M.J., Hagu, D.C., and Chen, D.J.: Processing nanocrystalline ceramics for applications in superplasticity. Mater. Sci. Eng., A 166, 145 (1993).Google Scholar
7Chou, T.C. and Nieh, T.G.: Nucleation and concurrent anomalous grain growth of α–Al2O3 during γ–α phase transformation. J. Am. Ceram. Soc. 74, 2270 (1991).Google Scholar
8Freim, J., McKittrick, J., Katz, J., and Sickafus, K.: Microwave sintering of nanocrystalline γ–Al2O3. Nanostruct. Mater. 4, 371 (1994).Google Scholar
9Gallas, M.R., Hockey, B., Pechenik, A., and Piermarini, G.J.: Fabrication of transparent γ–Al2O3 from nanosize particles. J. Am. Ceram. Soc. 77, 2107 (1994).CrossRefGoogle Scholar
10Gallas, M.R. and Piermarini, G.J.: Bulk modulus and Young’s modulus of nanocrystalline γ-alumina. J. Am. Ceram. Soc. 77, 2917 (1994).CrossRefGoogle Scholar
11Cahn, R.W.: Nanostructured materials. Nature 348, 389 (1990).CrossRefGoogle Scholar
12Karch, J., Birringer, R., and Gleiter, H.: Ceramics, ductile at low temperature. Nature 330, 556 (1987).CrossRefGoogle Scholar
13Costa, T.M.H., Gallas, M.R., Benvenutti, E.V., and du.Jornada, J.A.H.: Study of nanocrystalline γ–Al2O3 produced by high-pressure compaction. J. Phys. Chem. B103, 4278 (1999).CrossRefGoogle Scholar
14Koruderlieva, S.N. and Peatchkova, B.R.: Effect of the compression pressure on the phase transition γ–Al2O3 ← α–Al2O3. J. Mater. Sci. Lett. 16, 1662 (1997).Google Scholar
15Li, G.H., Hu, Z.X., and Zhang, L.D.: Elastic modulus of nano-alumina composite. J. Mater. Sci. Lett. 17, 1185 (1998).Google Scholar
16Hellming, R.J. and Ferkel, H.: Using alumina nanopowder as cement in bonding of alumina ceramics. Phys. Status Solidi A 175, 549 (1999).3.0.CO;2-#>CrossRefGoogle Scholar
17Mishra, R.S., Schneider, J.A., Shackelford, J.F., and Mukherjee, A.K.: Plasma activated sintering of nanocrystalline γ–Al2O3. Nanostruct. Mater. 5, 525 (1995).Google Scholar
18Zhao, J., Hearne, G.R., Maaza, M., Lahu-Lacour, F., Witcomb, M.J., Bihan, T.L., and Mezouar, M.: Compressibility of nanostructured alumina phases determined from synchrotron x-ray diffraction studies at high pressure. J. Appl. Phys. 90, 3280 (2001).Google Scholar
19Kruger, M., Chen, B., Penwell, D., Benedetti, L.R., and Jeanloz, R.: Particle-size effect on the compressibility of nanocrystalline alumina. Phy. Rev. B 66, 144101 (2002).Google Scholar
20Weertman, J.R.: Hall–Petch strengthening in nanocrystalline metals. Mater. Sci. Eng., A 166, 161 (1993).Google Scholar
21Suryanarayana, C.: Nanocrystalline materials. Int. Mater. Rev. 40, 41 (1995).Google Scholar
22Christman, T.: Grain boundary strengthening exponent in conventional and ultrafine microstructures. Scripta Metall. Mater. 28, 1495 (1993).CrossRefGoogle Scholar
23Ghosh, T.B., Dhabal, S., and Datta, A.K.: On crystallite size dependence of phase stability of nanocrystalline TiO2. J. Appl. Phys. 94, 4577 (2003).Google Scholar
24Singhal, A., Skandan, G., Wang, A., Glumac, N., Kear, B.H., and Hunt, R.D.: On nanoparticle aggregation during vapor phase synthesis. Nanostruct. Mater. 11, 545 (1999).Google Scholar
25The Rietveld Method, edited by Young, R.A. (International Union of Crystallography, Oxford University Press, Oxford, UK, 1996).Google Scholar
26Williamson, G.K. and Smallman, R.E.: Dislocation densities in some annealed and cold worked metals from measurements on the x-ray Debye–Scherrer spectrum. Philos. Mag. B 1, 34 (1956).Google Scholar
27Barrett, C.S. and Massalski, T.B.: Structure of Metals, 3rd ed., McGraw-Hill Series in Materials Science Engineering (1968), p. 398.Google Scholar