Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T12:59:26.429Z Has data issue: false hasContentIssue false

Glass formation in a (Ti, Zr, Hf)–(Cu, Ni, Ag)–Al high-order alloy system by mechanical alloying

Published online by Cambridge University Press:  31 January 2011

L. C. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
Z. Q. Shen
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
J. Xu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, glass formation under high-energy ball milling was investigated for a (Ti0.33Zr0.33Hf0.33)50(Ni0.33Cu0.33Ag0.33)40Al10 high-order alloy system with equiatomic substitution for early and late transition-metal contents. For comparison, an amorphous alloy ribbon with the same composition was prepared using the melt-spinning method as well. Structural features of the samples were characterized using x-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. Mechanical alloying resulted in a glassy alloy similar to that obtained by melt spinning. However, the glass formation was incomplete, and a small amount of unreacted crystallites smaller than 30 nm in size still remained in the final ball-milled product. Like the melt-spun glass, the ball-milled glassy alloy also exhibited a distinct glass transition and a wide supercooled liquid region of about 80 K. Crystallization of this high-order glassy alloy proceeded through two main stages. After the primary nanocrystallization was completed, the remaining amorphous phase also behaved as a glass, showing a detectable glass transition and a large supercooled liquid region of about 100 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Seidel, M., Eckert, J., and Schultz, L., J. Appl. Phys. 77, 5446 (1995).CrossRefGoogle Scholar
2.Seidel, M., Eckert, J., Zueco-Rodrigo, E., and Schultz, L., J. Non-Cryst. Solids 205–207, 514 (1996).CrossRefGoogle Scholar
3.Schlorke, N., Eckert, J., and Schultz, L., Mater. Sci. Forum 269–272, 761 (1998).CrossRefGoogle Scholar
4.Schlorke, N., Eckert, J., and Schultz, L., Mater. Sci. Eng. A 226–228, 425 (1997).CrossRefGoogle Scholar
5.Sagel, A., Wunderlich, R.K., Perepezko, J.H., and Fecht, H-J., Appl. Phys. Lett. 70, 580 (1997)CrossRefGoogle Scholar
6.Sagel, A., Wunderlich, R.K., and Fecht, H-J., Mater. Lett. 33, 123 (1997).CrossRefGoogle Scholar
7.Börner, I. and Eckert, J., Scripta Mater. 45, 237 (2001).CrossRefGoogle Scholar
8.Zhang, L.C. and Xu, J., Mater. Sci. Forum 386–388, 47 (2002).CrossRefGoogle Scholar
9.Zhang, L.C., Xu, J., and Ma, E., J. Mater. Res. 17, 1743 (2002).CrossRefGoogle Scholar
10.El-Eskandarany, M.S. and Inoue, A., Mater. Trans. 43, 1422 (2002).CrossRefGoogle Scholar
11.Kawamura, Y., Kato, H., Inoue, A., and Masumoto, T., Appl. Phys. Lett. 67, 2008 (1995).CrossRefGoogle Scholar
12.Kawamura, Y., Kato, H., Inoue, A., and Masumoto, T., Int. J. Powder Metall. 33, 50 (1997).Google Scholar
13.Sordelet, D.J., Rozhkova, E., Huang, P., Wheelock, P.B., Besser, M.F., Kramer, M.J., Calvo-Dahlborg, M., and Dahlborg, U., J. Mater. Res. 17, 186 (2002).CrossRefGoogle Scholar
14.Itoi, T., Takamizawa, T., Kawamura, Y., and Inoue, A., Scripta Mater. 45, 1131 (2001).CrossRefGoogle Scholar
15.Ishihara, S., Zhang, W., and Inoue, A., Scripta Mater. 47, 231 (2002).CrossRefGoogle Scholar
16.Lee, P-Y., Hung, S-S., Hsieh, J-T., Lin, Y-L., and Lin, C-K., Intermetallics 10, 1277 (2002).CrossRefGoogle Scholar
17.Lee, M.H., Bae, D.H., Kim, W.T., Kim, D.H., Rozhkova, E., Wheelock, P.B., and Sordelet, D.J., J. Non-Cryst. Solids 315, 89 (2003).CrossRefGoogle Scholar
18.Robertson, J., Im, J-T., Karaman, I., Hartwig, K.T., and Anderson, I.E., J. Non-Cryst. Solids 317, 144 (2003).CrossRefGoogle Scholar
19.Cantor, B., Kim, K.B., and Warren, P.J., Mater. Sci. Forum 386–388, 27 (2002).CrossRefGoogle Scholar
20.Kim, K.B., Warren, P.J., and Cantor, B., J. Non-Cryst. Solids 317, 17 (2003).CrossRefGoogle Scholar
21.Ma, L., Wang, L., Zhang, T., and Inoue, A., Mater. Trans. 43, 277 (2002).CrossRefGoogle Scholar
22.Basset, D., Matteazzi, P., and Miani, F., Mater. Sci. Eng. A 174, 71 (1994).CrossRefGoogle Scholar
23.Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., Binary Alloy Phase Diagrams, 2nd ed. (ASM Inetrnational, Materials Park, OH, 1990).Google Scholar
24.Gachon, J.C., Dirand, M., and Hertz, J., J. Less-Comm. Met. 92, 307 (1983).CrossRefGoogle Scholar
25.Lee, P.Y. and Koch, C.C., J. Mater. Sci. 23, 2837 (1988).CrossRefGoogle Scholar
26.Altounian, Z., Batalla, E., Strom-Olsen, J.O., and Walter, J.L., J. Appl. Phys. 61, 149 (1987).CrossRefGoogle Scholar
27.Williamson, G.K. and Hall, W.H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
28.Inoue, A., Tomioka, H., and Masumoto, T., J. Mater. Sci. 18, 153 (1983).CrossRefGoogle Scholar
29.Gloriant, T., Gich, M., Suriñ, S., Baró, M.D., and Greer, A.L., Mater. Sci. Forum 343–346, 365 (2000).CrossRefGoogle Scholar
30.Weeber, A. and Bakker, H., Physica B 153, 93 (1988).CrossRefGoogle Scholar
31.Koch, C.C., Mater. Sci. Forum 88–90, 243 (1992).CrossRefGoogle Scholar
32.Schultz, L. and Eckert, J., in Topics in Applied Physics, edited by Beck, H. and Güntherodt, H-J. (Springer-Verlag Berlin Heidelberg, Germany, 1994), Vol. 72, p. 69.Google Scholar
33.Suryanarayana, C., Prog. Mater. Sci. 46, 1 (2001).CrossRefGoogle Scholar
34.Schwarz, R.B., Petrich, R.R., and Saw, C.K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
35.Schumacher, P., Enayati, M.H., and Cantor, B., Mater. Sci. Forum 312–314, 351 (1999).CrossRefGoogle Scholar
36.Schwarz, R.B., Mater. Sci. Forum 269–272, 665 (1998).CrossRefGoogle Scholar
37.Schwarz, R.B. and Petrich, R.R., J. Less-Comm. Met. 140, 171 (1988).CrossRefGoogle Scholar
38.Chen, Y., Bibole, M., Le, R. Hazif, and Martin, G., Phys. Rev. B 48, 14 (1993).CrossRefGoogle Scholar
39.Galy, D., Chaffron, L., and Martin, G., J. Mater. Res. 12, 688 (1997).CrossRefGoogle Scholar
40.Lee, P.Y. and Koch, C.C., Appl. Phys. Lett. 50, 1578 (1987).CrossRefGoogle Scholar
41.Seidel, M., Eckert, J., Bächer, I., Reibold, M., and Schultz, L., Acta Mater. 48, 3657 (2000).CrossRefGoogle Scholar
42.Sagel, A., Wanderka, N., Wunderlich, R.K., Schubert-Bischoff, P., and Fecht, H-J., Scripta Mater. 38, 163 (1998).CrossRefGoogle Scholar
43.Bellon, P. and Averback, R.S., Phys. Rev. Lett. 74, 1819 (1995).CrossRefGoogle Scholar
44.Sheng, H.W., Wilde, G., and Ma, E., Acta Mater. 50, 475 (2002).CrossRefGoogle Scholar
45.Lee, D., Cheng, J., Yuan, M., Wagner, C.N.J., and Ardell, A.J., J. Appl. Phys. 64, 4772 (1988).CrossRefGoogle Scholar
46.Brüning, R., Altounian, Z., and Strom-Olsen, J.O., Mater. Sci. Eng. 97, 317 (1988).CrossRefGoogle Scholar
47.Haruyama, O., Kuroda, A., and Asahi, N., J. Non-Cryst. Solids 150, 483 (1992).CrossRefGoogle Scholar
48.Damonte, L.C., Mendoza-Zélis, L.A., Deledda, S., and Eckert, J., Mater. Sci. Eng. A 343, 194 (2003).CrossRefGoogle Scholar
49.Sordelet, D.J., Rozhkova, E., Besser, M.F., and Kramer, M.J., Appl. Phys. Lett. 80, 4735 (2002).CrossRefGoogle Scholar
50.El-Eskandarany, M.S., Saida, J., and Inoue, A., Acta Mater. 50, 2725 (2002).CrossRefGoogle Scholar
51.Saida, J., Mastushita, M., and Inoue, A., J. Appl. Phys. 90, 4717 (2001).CrossRefGoogle Scholar
52.Zhang, T., Inoue, A., Chen, S., and Masumoto, T., Mater. Trans. JIM 33, 143 (1992).CrossRefGoogle Scholar
53.Inoue, A., Chen, S., and Masumoto, T., Mater. Sci. Eng. A 179/180, 346 (1994).CrossRefGoogle Scholar
54.Matsubara, E., Sugiyama, K., Shinohara, A.H., Waseda, Y., Inoue, A., Zhang, T., and Masumoto, T., Mater. Sci. Eng. A 179/180, 444 (1994).CrossRefGoogle Scholar
55.Rubin, J.B. and Schwarz, R.B., Phys. Rev. B 50, 795 (1994).CrossRefGoogle Scholar
56.Desré, P.J., Mater. Trans. JIM 38, 583 (1997).Google Scholar
57.Greer, A.L., Nature 366, 303 (1993).CrossRefGoogle Scholar
58.Köster, U., Meinhardt, J., Roos, S., and Rüdiger, A., Mater. Sci. Forum 225–227, 311 (1996).CrossRefGoogle Scholar
59.Baricco, M., Spriano, S., Chang, I., Petrzhik, M.I., and Battezzati, L., Mater. Sci. Eng. A 304–306, 305 (2001).CrossRefGoogle Scholar