Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T14:59:07.494Z Has data issue: false hasContentIssue false

General strategy for doping rare earth metals into Au–ZnO core–shell nanospheres

Published online by Cambridge University Press:  02 December 2019

René Zeto
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
Daniel Cummins
Affiliation:
Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
Arynn Gallegos
Affiliation:
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, USA
Mike Shao
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
Andrea M. Armani*
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA; and Ming Hsieh Department of Electrical and Computer Engineering, University of Southern, Los Angeles, California 90089, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Multifunctional nanoparticles are an emerging area of research, impacting numerous fields ranging from biomedical applications to energy. While initial core–shell structures consisted of similar materials, such as Au–Ag or CdTe–CdSe nanoparticles, recent work has expanded this line of investigation to include particles of dissimilar materials. However, there are several challenges when synthesizing dissimilar material systems. In this work, a method for doping the shell of an Au–ZnO nanosphere is demonstrated. Several metal dopants are investigated, including Cu, Ce, Er, Nd, Tm, and Yb. The ZnO shell is nucleated on the gold nanosphere core via an ascorbic acid–assisted growth, and the dopant is intercalated uniformly into the shell during the self-assembly phase of the shell formation. The doping and polycrystalline shell are confirmed using a series of qualitative and quantitative methods. This multi-material nanoparticle synthesis strategy opens the door for future applications in sensing, photocatalysis, and bioimaging.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G.: (CdSe)ZnS core–shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463 (1997).CrossRefGoogle Scholar
Peng, X., Schlamp, M.C., Kadavanich, A.V., and Alivisatos, A.P.: Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019 (1997).CrossRefGoogle Scholar
Hines, M.A. and Guyot-Sionnest, P.: Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468 (1996).CrossRefGoogle Scholar
Chan, J.M., Zhang, L., Yuet, K.P., Liao, G., Rhee, J-W., Langer, R., and Farokhzad, O.C.: PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 30, 1627 (2009).CrossRefGoogle ScholarPubMed
Haag, R.: Supramolecular drug-delivery systems based on polymeric core–shell architectures. Angew. Chem., Int. Ed. 43, 278 (2004).CrossRefGoogle ScholarPubMed
Chen, T., Zhao, T., Wei, D., Wei, Y., Li, Y., and Zhang, H.: Core–shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydr. Polym. 92, 1124 (2013).CrossRefGoogle ScholarPubMed
Chen, O., Zhao, J., Chauhan, V.P., Cui, J., Wong, C., Harris, D.K., Wei, H., Han, H-S., Fukumura, D., Jain, R.K., and Bawendi, M.G.: Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445 (2013).CrossRefGoogle ScholarPubMed
Cho, N-H., Cheong, T-C., Min, J.H., Wu, J.H., Lee, S.J., Kim, D., Yang, J-S., Kim, S., Kim, Y.K., and Seong, S-Y.: A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 6, 675 (2011).CrossRefGoogle ScholarPubMed
Dobson, J.: Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55 (2006).CrossRefGoogle Scholar
Kang, H., Trondoli, A.C., Zhu, G., Chen, Y., Chang, Y-J., Liu, H., Huang, Y-F., Zhang, X., and Tan, W.: Near-infrared light-responsive core–shell nanogels for targeted drug delivery. ACS Nano 5, 5094 (2011).CrossRefGoogle ScholarPubMed
Xu, Z., Quintanilla, M., Vetrone, F., Govorov, A.O., Chaker, M., and Ma, D.: Harvesting lost photons: Plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au. Adv. Funct. Mater. 25, 2950 (2015).CrossRefGoogle Scholar
Maeda, K., Teramura, K., Lu, D., Saito, N., Inoue, Y., and Domen, K.: Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 45, 7806 (2006).CrossRefGoogle Scholar
Li, J., Cushing, S.K., Bright, J., Meng, F., Senty, T.R., Zheng, P., Bristow, A.D., and Wu, N.: Ag@Cu2O core–shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 3, 47 (2013).CrossRefGoogle Scholar
Li, B., Gu, T., Ming, T., Wang, J., Wang, P., Wang, J., and Yu, J.C.: (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 8, 8152 (2014).CrossRefGoogle Scholar
Li, B., Wang, R., Shao, X., Shao, L., and Zhang, B.: Synergistically enhanced photocatalysis from plasmonics and a co-catalyst in Au@ZnO–Pd ternary core–shell nanostructures. Inorg. Chem. Front. 4, 2088 (2017).CrossRefGoogle Scholar
Liu, X., Iocozzia, J., Wang, Y., Cui, X., Chen, Y., Zhao, S., Li, Z., and Lin, Z.: Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10, 402 (2017).CrossRefGoogle Scholar
Zhang, Q., Xie, G., Du, H., Yang, J., Su, Y., Tai, H., Xu, M., and Zhao, K.: Adsorption behaviors of gas molecules on the surface of ZnO nanocrystals under UV irradiation. Sci. China Technol. Sci. 62, 110 (2019).Google Scholar
Chung, F-C., Zhu, Z., Luo, P-Y., Wu, R-J., and Li, W.: Au@ZnO core–shell structure for gaseous formaldehyde sensing at room temperature. Sens. Actuators, B 199, 314 (2014).CrossRefGoogle Scholar
Majhi, S.M., Rai, P., and Yu, Y-T.: Facile approach to synthesize Au@ZnO core–shell nanoparticles and their application for highly sensitive and selective gas sensors. ACS Appl. Mater. Interfaces 7, 9462 (2015).CrossRefGoogle ScholarPubMed
Haldar, K.K., Sen, T., and Patra, A.: Au@ZnO core–shell nanoparticles are efficient energy acceptors with organic dye donors. J. Phys. Chem. C 112, 11650 (2008).CrossRefGoogle Scholar
Sun, L., Wei, G., Song, Y., Liu, Z., Wang, L., and Li, Z.: Solution-phase synthesis of Au@ZnO core–shell composites. Mater. Lett. 60, 1291 (2006).CrossRefGoogle Scholar
Shao, X., Li, B., Zhang, B., Shao, L., and Wu, Y.: Au@ZnO core–shell nanostructures with plasmon-induced visible-light photocatalytic and photoelectrochemical properties. Inorg. Chem. Front. 3, 934 (2016).CrossRefGoogle Scholar
Eustis, S. and El-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209 (2006).CrossRefGoogle ScholarPubMed
Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).CrossRefGoogle Scholar
Halas, N.J., Lal, S., Chang, W-S., Link, S., and Nordlander, P.: Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913 (2011).CrossRefGoogle ScholarPubMed
Alù, A. and Engheta, N.: Plasmonic and metamaterial cloaking: Physical mechanisms and potentials. J. Opt. A: Pure Appl. Opt. 10, 093002 (2008).CrossRefGoogle Scholar
Cai, W., Chettiar, U.K., Kildishev, A.V., and Shalaev, V.M.: Optical cloaking with metamaterials. Nat. Photonics 1, 224 (2007).CrossRefGoogle Scholar
Argyropoulos, C., Chen, P-Y., Monticone, F., D’Aguanno, G., and Alù, A.: Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys. Rev. Lett. 108, 263905 (2012).CrossRefGoogle ScholarPubMed
Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., and Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006).CrossRefGoogle ScholarPubMed
Pingarrón, J.M., Yáñez-Sedeño, P., and González-Cortés, A.: Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 53, 5848 (2008).CrossRefGoogle Scholar
Liu, J. and Lu, Y.: A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125, 6642 (2003).CrossRefGoogle ScholarPubMed
Li, Y., Schluesener, H.J., and Xu, S.: Gold nanoparticle-based biosensors. Gold Bull. 43, 29 (2010).CrossRefGoogle Scholar
Janotti, A. and Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009).CrossRefGoogle Scholar
Greene, L.E., Yuhas, B.D., Law, M., Zitoun, D., and Yang, P.: Solution-grown zinc oxide nanowires. Inorg. Chem. 45, 7535 (2006).CrossRefGoogle ScholarPubMed
Huang, M.H.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).CrossRefGoogle ScholarPubMed
Chen, Z., Shan, Z., Cao, M.S., Lu, L., and Mao, S.X.: Zinc oxide nanotetrapods. Nanotechnology 15, 365 (2004).CrossRefGoogle Scholar
Diep, V.M. and Armani, A.M.: Flexible light-emitting nanocomposite based on ZnO nanotetrapods. Nano Lett. 16, 7389 (2016).CrossRefGoogle ScholarPubMed
Wang, J.B., Huang, G.J., Zhong, X.L., Sun, L.Z., Zhou, Y.C., and Liu, E.H.: Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles. Appl. Phys. Lett. 88, 252502 (2006).CrossRefGoogle Scholar
Nair, M.G., Nirmala, M., Rekha, K., and Anukaliani, A.: Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett. 65, 1797 (2011).CrossRefGoogle Scholar
Koshizaki, N. and Oyama, T.: Sensing characteristics of ZnO-based NOx sensor. Sens. Actuators, B 66, 119 (2000).CrossRefGoogle Scholar
Manikandan, A., Manikandan, E., Meenatchi, B., Vadivel, S., Jaganathan, S.K., Ladchumananandasivam, R., Henini, M., Maaza, M., and Aanand, J.S.: Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: Synthesis structural optical and antibacterial studies. J. Alloys Compd. 723, 1155 (2017).CrossRefGoogle Scholar
Jiang, F., Peng, Z., Zang, Y., and Fu, X.: Progress on rare-earth doped ZnO-based varistor materials. J. Adv. Ceram. 2, 201 (2013).CrossRefGoogle Scholar
Yang, Y., Han, S., Zhou, G., Zhang, L., Li, X., Zou, C., and Huang, S.: Ascorbic-acid-assisted growth of high quality M@ZnO: A growth mechanism and kinetics study. Nanoscale 5, 11808 (2013).CrossRefGoogle ScholarPubMed
Li, P., Wei, Z., Wu, T., Peng, Q., and Li, Y.: Au–ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 133, 5660 (2011).CrossRefGoogle ScholarPubMed
Singhal, S., Kaur, J., Namgyal, T., and Sharma, R.: Cu-doped ZnO nanoparticles: Synthesis, structural and electrical properties. Phys. B 407, 1223 (2012).CrossRefGoogle Scholar
Oldenburg, S.J., Averitt, R.D., Westcott, S.L., and Halas, N.J.: Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243 (1998).CrossRefGoogle Scholar
Abrahams, S.C. and Bernstein, J.L.: Remeasurement of the structure of hexagonal ZnO. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 1233 (1969).CrossRefGoogle Scholar
Owen, E.A. and Yates, E.L.: XLI. Precision measurements of crystal parameters. London, Edinburgh Dublin Philos. Mag. J. Sci. 15, 472 (1933).CrossRefGoogle Scholar
Stahl, R., Jung, C., Lutz, H.D., Kockelmann, W., and Jacobs, H.: Kristallstrukturen und wasserstoffbrückenbindungen bei β-Be(OH)2 und ε-Zn(OH)2. Z. Anorg. Allg. Chem. 624, 1130 (1998).3.0.CO;2-G>CrossRefGoogle Scholar
Nikoobakht, B. and El-Sayed, M.A.: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957 (2003).CrossRefGoogle Scholar
Supplementary material: PDF

Zeto et al. supplementary material

Zeto et al. supplementary material

Download Zeto et al. supplementary material(PDF)
PDF 12.6 MB