Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T02:05:39.421Z Has data issue: false hasContentIssue false

Freeform fabrication of aluminum metal-matrix composites

Published online by Cambridge University Press:  31 January 2011

C. W. Souvignier
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
T. B. Sercombe
Affiliation:
Department of Mining, Minerals and Materials Engineering, The University of Queensland, Qld 4072, Australia, and Interdisciplinary Research Center (IRC) in Advanced Materials, The University of Birmingham, Edgbaston, B15 2TT, United Kingdom
S. H. Huo
Affiliation:
Department of Mining, Minerals and Materials Engineering, The University of Queensland, Qld 4072, Australia
P. Calvert
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
G. B. Schaffer
Affiliation:
Department of Mining, Minerals and Materials Engineering, The University of Queensland, Qld 4072, Australia
Get access

Abstract

A series of metal-matrix composites were formed by extrusion freeform fabrication of a sinterable aluminum alloy in combination with silicon carbide particles and whiskers, carbon fibers, alumina particles, and hollow flyash cenospheres. Silicon carbide particles were most successful in that the composites retained high density with up to 20 vol% of reinforcement and the strength approximately doubles over the strength of the metal matrix alone. Comparison with simple models suggests that this unexpectedly high degree of reinforcement can be attributed to the concentration of small silicon carbide particles around the larger metal powder. This fabrication method also allows composites to be formed with hollow spheres that cannot be formed by other powder or melt methods.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Calvert, P. and Crockett, R., Chem. Mater. 9, 650 (1997).CrossRefGoogle Scholar
2Stuffle, K., Mulligan, A., Calvert, P., and Lombardi, J., Solid Freebody Forming of Ceramics from Polymerizable Slurry, edited by Marcus, H.L., Beaman, J.J., Barlow, J.W., Bourell, D.L., and Crawford, R.H., Solid Freeform Fabrication Symposium, Austin, Texas (University of Texas, Austin, TX, 1993).Google Scholar
3Crockett, R.S., O’Kelly, J., Calvert, P.D., Fabes, B.D., Stuffle, K., Creegan, P., and Hoffman, R., Predicting and Controlling Resolution and Surface Finish of Ceramic Objects Produced by Stereo-deposition Processes, edited by Marcus, H.L., Beaman, J.J., Barlow, J.W., Bourell, D.L., and Crawford, R.H., Solid Freeform Fabrication Symposium, Austin, Texas (University of Texas, 1995).Google Scholar
4Lombardi, J., George, G., Rintoul, L., and Calvert, P., Polym. Prepr. 37, 221 (1996).Google Scholar
5Calvert, P., George, G., and Rintoul, L., Chem. Mater. 8, 1298 (1996).Google Scholar
6Peng, J., Liang, T., and Calvert, P., Composites Part A: Applied Science and Manufacturing 30, 133 (1998).CrossRefGoogle Scholar
7Darken, L.S. and Gurry, R.W., Physical Chemistry of Metals (McGraw Hill, New York, 1953).Google Scholar
8Lall, C., International Journal of Powder Metallurgy 27, 315 (1991).Google Scholar
9Lumley, R., Sercombe, T.B., and Schaffer, G.B., Metall. Mater. Trans. A 30A, 457 (1999).Google Scholar
10Sercombe, T.B., Schaffer, G.B., and Calvert, P., J. Mater. Sci. 34, 4245 (1999).CrossRefGoogle Scholar
11Tuan, W.H. and Brook, R.J., J. Mater. Sci. 24, 1953 (1989).Google Scholar
12Sudre, O. and Lange, F.F., J. Am. Ceram. Soc. 75, 519 (1992).Google Scholar
13Kimura, T., Kajiyama, H., Yazaki, R., and Yamaguchi, T., J. Mater. Sci. 31, 4149 (1996).CrossRefGoogle Scholar
14Nakada, Y. and Kimura, T., J. Am. Ceram. Soc. 80, 401 (1997).CrossRefGoogle Scholar
15Tiegs, T.N. and Dillard, D.M., J. Am. Ceram. Soc. 73, 1440 (1990).CrossRefGoogle Scholar
16Levi, C.G., Abbaschian, G.J., and Mehrabian, R., Metall. Trans. A 9A, 697 (1978).CrossRefGoogle Scholar
17Guell, D.C. and Benard, A., in Flow Induced Alignment in Composite Materials, edited by Papathanasiou, T.D. and Guell, D.C. (Woodhead, Cambridge, 1997) pp. 142.Google Scholar
18Suganuma, K., Fujita, T., Niihara, K., Okamoto, T., Koizumi, M., and Suzuki, N., Mater. Sci. Technol. 5, 249 (1989).CrossRefGoogle Scholar
19TerHaar, T.H. and Duszczyk, J., J. Mater. Sci. 29, 1011 (1994).CrossRefGoogle Scholar
20Alman, D.E. and Stoloff, N.S., International Journal of Powder Metallurgy 27, 29 (1991).Google Scholar
21Pinwill, I.E., Ahmed, F., Allen, P.S., and Bevis, M.J., Powder Metallurgy 35, 107 (1992).CrossRefGoogle Scholar
22Blackburn, S. and Bohm, H., J. Mater. Sci. 29, 4157 (1994).Google Scholar
23Alman, D.E., Stoloff, N.S., Bose, A., and German, R.M., J. Mater. Sci. 30, 5251 (1995).Google Scholar
24Zhang, T., Evans, J.R.G., and Bevis, M.J., International Journal of Powder Metallurgy 32, 331 (1996).Google Scholar
25Ma, Z.Y., Bi, J., Lu, Y.X., and Gao, Y.X., Scripta Metallurgica et Materialia 29, 225 (1993).CrossRefGoogle Scholar
26Sternowsky, S.B., O’Donnell, G., and Looney, L., Key Eng. Mater. 127–131, 455 (1997).Google Scholar
27Yoshimura, H.N., Goncalves, M., and Goldenstein, H., Key Eng. Mater. 127–131, 985 (1997).Google Scholar
28Bouvard, D. and Lange, F.F., Acta Metall. Mater. 39, 3083 (1991).Google Scholar
29Christman, T., Needleman, A., and Suresh, S., Acta Metall. 37, 3029 (1989).CrossRefGoogle Scholar
30Corbin, S.F. and Wilkinson, D.S., Acta Metall. Mater. 42, 1311 (1994).CrossRefGoogle Scholar
31Corbin, S.F. and Wilkinson, D.S., Acta Metall. Mater. 42, 1319 (1994).CrossRefGoogle Scholar
32Guo, R.Q., Rohatgi, P.K., and Nath, D., J. Mater. Sci. 31, 5513 (1996).CrossRefGoogle Scholar
33Guo, R.Q., Rohatgi, P.K., and Nath, D., J. Mater. Sci. 32, 3971 (1997).Google Scholar