Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T15:23:26.108Z Has data issue: false hasContentIssue false

Formation of metal microspheres by ultrasonic cavitation

Published online by Cambridge University Press:  31 January 2011

Hilla Friedman
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
Ze'ev Porat*
Affiliation:
Department of Analytical Chemistry, Nuclear Research Center-Negev, Be'er-Sheva 84190, Israel; and Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er sheva 84105, Israel
Itzhak Halevy
Affiliation:
Department of Physics, Nuclear Research Center-Negev, Be'er-Sheva 84190, Israel
Shimon Reich*
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
*
a)Address all correspondence to this author. e-mail: [email protected]
b)Deceased.
Get access

Abstract

A new physical method is described for the preparation of metal microspheres by ultrasonic cavitation of low-melting point metals (<380 °C) immersed in hot silicone oil. The ultrasonic radiation causes dispersion of the molten metals into spheres, which solidify rapidly on cooling. This method is illustrated for the synthesis of Pb and Au–Si eutectic alloy.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gedanken, A.Using sonochemistry for fabrication of nanomaterials. Ultrason. Sonochem. 11, 47 (2004)CrossRefGoogle ScholarPubMed
2.Li, Q., Li, H., Pol, V.G., Bruckental, I., Koltypin, Y., Calderon-Moreno, J., Nowik, I., Gedanken, A.Sonochemical synthesis, structural and magnetic propeties of air-stable Fe/Co alloy nanoparticles. New J. Chem. 27, 1194 (2003)CrossRefGoogle Scholar
3.Ohayon, E., Gedanken, A.The application of ultrasound radiation to the synthesis of nanocrystalline metal oxide in non-aqueous solvent. Ultrason. Sonochem. 17, (1)173 (2009)CrossRefGoogle Scholar
4.Li, M.K., Fogler, H.S.Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets. J. Fluid Mech. 88, 499 (1978)CrossRefGoogle Scholar
5.Li, M.K., Fogler, H.S.Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. J. Fluid Mech. 88, 513 (1978)CrossRefGoogle Scholar
6.Crawford, A.E.Techniques of ultrasoundApplications of Low and High Power 1st ed. (Dunod, Paris, France 1959)Google Scholar
7.Lauterborn, W., Hentschel, W.Cavitation bubble dynamics studied by high speed photography and holography. Part 1. Ultrasonics 23, 260 (1985)CrossRefGoogle Scholar
8.Lauterborn, W., Hentschel, W.Cavitation bubble dynamics studied by high speed photography and holography. Part 2. Ultrasonics 24, 59 (1986)CrossRefGoogle Scholar
9.Preece, C.M., Hansson, I.L.A metallurgical approach to cavitation erosion. Adv. Mech. Phys. Surf. 1, 199 (1981)Google Scholar
10.Neppiras, E.A.Acoustic cavitation. Phys. Rep. 61, 159 (1980)CrossRefGoogle Scholar
11.Doktycz, S.J., Suslick, K.S.Interparticle collisions driven by ultrasound. Science 247, 1067 (1990)CrossRefGoogle ScholarPubMed
12.Chahine, G.L., Bovis, A.Cavitation and Inhomogeneities in Underwater Acoustics edited by W. Lauterborn (Springer-Verlag, Berlin 1980)2329CrossRefGoogle Scholar
13.Ida, M., Naoe, T., Futakawa, M.Direct observation and theoretical study of cavitation bubbles in liquid mercury. Phys. Rev. E 75, 046304 (2007)CrossRefGoogle ScholarPubMed
14.Lin, L., Cheng, Y.T., Najafi, K.Formation of silicon-gold eutectic bond using localized heating method. Jpn. J. Appl. Phys. 37, L1412 (1998)CrossRefGoogle Scholar
15.Cohn, M.B., Liang, Y., Howe, R.T., Pisano, A.P.Wafer-to-wafer transfer of microstructures for vacuum packagingProc. IEEE Solid-State Sensor Actuator Workshop (Hilton Head Island, SC 1996)32Google Scholar
16.Cheng, Y.T., Lin, L., Najafi, K.Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging. J. Microelectromech. Syst. 9, 3 (2000)CrossRefGoogle Scholar
17.Shpyrko, O.G., Streitel, R., Balagurusamy, V.S.K., Grigoriev, A.Y., Deutsch, M., Ocko, B.M., Meron, M., Lin, B., Pershan, P.S.Surface crystallization in a liquid Au–Si alloy. Science 313, 77 (2006)CrossRefGoogle Scholar
18.Tkachenko, A.V., Rabin, Y.Fluctuation-stabilized surface freezing of chain molecules. Phys. Rev. Lett. 76, 2527 (1996)CrossRefGoogle ScholarPubMed