Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T01:01:37.789Z Has data issue: false hasContentIssue false

Formation and characterization of high-density silver nanoparticles embedded in silica thin films by “in situ” self-reduction

Published online by Cambridge University Press:  31 January 2011

G. Compagnini*
Affiliation:
Dipartimento di Scienze Chimiche, Universit´di Catania, Viale A. Doria 6, 95125 Catania, Italy
M. M. Fragal´
Affiliation:
Dipartimento di Scienze Chimiche, Universit´di Catania, Viale A. Doria 6, 95125 Catania, Italy
L. D'Urso
Affiliation:
Dipartimento di Scienze Chimiche, Universit´di Catania, Viale A. Doria 6, 95125 Catania, Italy
C. Spinella
Affiliation:
CNR-IMeTeM, Stradale Primosole 50, 95100 Catania, Italy
O. Puglisi
Affiliation:
Dipartimento di Scienze Chimiche, Universit´di Catania, Viale A. Doria 6, 95125 Catania, Italy
Get access

Abstract

Silver nanoparticles (10–20 nm) embedded into silica thin films have been obtained through the use of a silver organometallic precursor compound dissolved in Spin-On-Glass and subsequently spinned onto suitable substrates. In this paper we present a study of the shape, size, and distribution of silver particles through the use of microscopes, x-ray diffraction, and optical extinction. It has been observed that the obtained films are stable for annealing up to 500 °C with a progressive degradation above this temperature. Furthermore it is possible to obtain high-density silver particles up to 15% in weight without affecting the cluster size and shape.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Roost, N., Ackermann, L., and Pacchioni, G., Chem. Phys. Lett. 93, 94 (1992).Google Scholar
2Lewis, L.N., Chem. Rev. 93, 2693 (1993).CrossRefGoogle Scholar
3Bond, G.C., Surf. Sci. 156, 966 (1985).CrossRefGoogle Scholar
4Gleiter, H.Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
5Stucky, G.D. and McDougall, J.E., Science 247, 669 (1990).CrossRefGoogle Scholar
6Heolweil, E.J. and Hachestrasser, R.M., J. Chem. Phys. 82, 4762 (1985).CrossRefGoogle Scholar
7Stepanov, A.L., Hole, D.E., and Townsend, P.D., J. Non-Cryst. Solids 260, 574 (1999).CrossRefGoogle Scholar
8Ila, D., Williams, E.K., Sarkisov, S., Smith, C.C., Poker, D.B., and Hensley, D.K., Nucl. Instrum. Methods 141, 289 (1998).CrossRefGoogle Scholar
9Peters, D.P., Strohhoöfer, C., Brongersma, M.L., van Elsken, J., and Polman, A., Nucl. Instrum. Methods 237–244, 168 (2000).Google Scholar
10Dubiel, M., Hofmeister, H., Schurin, E., Wendler, E., and Wesch, W., Nucl. Instrum. Methods 166–167, 871 (2000).CrossRefGoogle Scholar
11Carpenter, J.P., Lukehart, C.M., Milne, S.B., Henderson, D.O., Mu, R., and Stock, S.R., Chem. Mater. 9, 3164 (1997).CrossRefGoogle Scholar
12Fragalà, M.E., Compagnini, G., Malandrino, G., Spinella, C., and Puglisi, O., Eur. Phys. J. D9, 631 (1999).CrossRefGoogle Scholar
13Fragalà, M.E., Malandrino, G., Puglisi, O., and Benelli, C., Chem. Mater. 12, 290 (2000).CrossRefGoogle Scholar
14Romero, J.D., Khan, M., Fatemi, H., and Turlo, J., 6, 1996 (1991).Google Scholar
15Hull, P.J., Hutchison, J.L., Salata, O.V., and Dobson, J., Adv. Mater. 9, 413 (1997).CrossRefGoogle Scholar
16Palpant, B., Prevél, B., Lermé, J., Cottancin, E., Pellarin, M., Treilleux, M., Perez, A., Vialle, J.L., and Broyer, M., 3, 57 (1998).Google Scholar
17Liu, Z., Li, H., Feng, X., Ren, S., and Wang, H., 84, 1913 (1998).Google Scholar
18Cai, W., Zhang, L., Zhong, H., and He, G., J. Mater. Res. 13, 2888 (1998).CrossRefGoogle Scholar
19 See for instance: Tanahashi, I., Yoshida, M., Manabe, Y., and Tohda, T., J. Mater. Res. 10, 362 (1995).CrossRefGoogle Scholar
20Jiang, H.G., Ruhle, M., and Lavernia, E.J., J. Mater. Res. 14, 549 (1999).CrossRefGoogle Scholar