Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T11:15:12.408Z Has data issue: false hasContentIssue false

Formation and characterization of germanium nanoparticles

Published online by Cambridge University Press:  31 January 2011

N. J. Welham*
Affiliation:
Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 2600, Australia
*
Get access

Abstract

Elemental germanium was mechanically milled with magnesium oxide with the intention of forming disperse nanoparticulate germanium in a soluble matrix. The crystallite size was determined by x-ray diffraction (XRD) and Raman spectroscopy using a phonon confinement model. The crystallite size was found to decrease exponentially with milling time; however, the size determined by XRD was typically five to ten times greater than that by Raman. This was attributed to the presence of two separate crystallite sizes, which were averaged when using the Scherrer equation for the XRD data. Sonication of the powder resulted in the breakup of >20 μm aggregates into individual particles of approximately 40 nm. These particles are thought to compose a single crystal core with a crystallite size of approximately 28 nm surrounded by a layer of smaller crystallites (approximately 5 nm), which showed quantization during Raman spectroscopy. Separation of the germanium from the magnesium oxide was readily achieved using a simple acid leach, although some oxidation of germanium was evident when using an aqueous leach.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chiu, L.A., Seraphin, A.A., and Kolenbrander, K.D., J. Electro. Mater. 23, 347 (1994).Google Scholar
2.Shimizuiwayama, T., Nakao, S., and Saitoh, K., Jpn. J. Appl. Phys., Part 2, 34, 86 (1994).CrossRefGoogle Scholar
3.Ishikawa, Y., Shibata, N., and Fukatsu, S., Appl. Phys. Lett. 68, 2249 (1996).CrossRefGoogle Scholar
4.Cabarrocas, P.R., Gay, P., and Hadjadj, A., J. Vac. Sci. Technol., A Vacuum 14, 655 (1996).CrossRefGoogle Scholar
5.Zhang, L.B., Coffer, J.L., Xu, W., and Zerda, T.W., Chem. Mater. 9, 2249 (1997).Google Scholar
6.Millet, P. and Calka, A., Mater. Sci. Eng. A Properties Micro 182, 1222 (1994).Google Scholar
7.Shen, T.D., Koch, C.C., McCormick, T.L., Nemanich, R.J., Huang, J.Y., and Huang, J.G., J. Mater. Res. 10, 139 (1995).CrossRefGoogle Scholar
8.Shen, T.D., Shmagin, I., Koch, C.C., Kolbas, R.M., Fahmy, Y., Bergman, L., Nemanich, R.J., McClure, M.T., Sitar, Z., and Quan, M.X., Phys. Rev. B: Condens. Matter 55, 7615 (1997).Google Scholar
9.Fan, G.J., Guo, F.Q., Hu, Z.Q., Quan, M.X., and Lu, K., Phys. Rev. B: Condens. Matter 55, 11010 (1997).Google Scholar
10.Shen, T.D., Wang, K.Y., Quan, M.X., and Hu, Z.Q., Appl. Phys. Lett. 63, 1637 (1993).Google Scholar
11.Martin-Lopez, R., Lenoir, B., Dauscher, A., Devaux, X., Dummler, W., Scherrer, H., Zandona, M., and Remy, J.F., Scripta Mater. 37, 219 (1997).CrossRefGoogle Scholar
12.Balaz, P., Balintova, M., Bastl, Z., Briancin, J., and Sepelak, V., Solid State Ionics 101, 45 (1997).Google Scholar
13.Millet, P., Calka, A., Williams, J.S., and Vantenaar, G.J.H, Appl. Phys. Lett. 63, 2505 (1993).CrossRefGoogle Scholar
14.Li, Z.L., Williams, J.S., and Calka, A., J. Appl. Phys. 81, 8029 (1997).CrossRefGoogle Scholar
15.Welham, N.J., Trans. Inst. Min. Metall. 106C, 141 (1997).Google Scholar
16.Welham, N.J. and Llewellyn, D.J., Miner. Eng. 11, 827 (1998).CrossRefGoogle Scholar
17.Tsuzuki, T. and McCormick, P.G., Appl. Phys. 65, 607 (1997).CrossRefGoogle Scholar
18.Tsuzuki, T., Ding, J., and McCormick, P.G., Physica B 239, 378 (1997).CrossRefGoogle Scholar
19.Benjamin, J.S., Metall. Trans. 1, 2943 (1970).Google Scholar
20.Welham, N.J. and Llewellyn, D.J., J. Eu. Ceram. Soc. 19, 2833 (1999).Google Scholar
21.Weeber, A.W. and Bakker, H., Physica B 153, 93 (1988).Google Scholar
22.Koch, C.C., J. Non-Cryst. Solids 117/118, 670 (1990).Google Scholar
23.Gaffet, E. and Harmelin, M., J. Less-Comm. Met. 157, 201 (1990).Google Scholar
24.Welham, N.J., Mater. Sci. Eng. A 255, 81 (1998).CrossRefGoogle Scholar
25.Lide, D.R., Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1992).Google Scholar
26.Calka, A. and Radlinski, A.P., Mater. Sci. Eng. A134, 1350 (1991).Google Scholar
27.Warren, B.E., X-Ray Diffraction (Dover, New York, 1990), pp. 251314.Google Scholar
28.Holland, T.J.B and Redfern, S.A.T, Mineralogical Magazine 61, 65 (1997).CrossRefGoogle Scholar
29.Schaaf, P., Rixecker, G., Yang, E., Wagner, C. and Gonser, U., Hyperfine Interact. 94, 2239 (1994).Google Scholar
30.Koch, C.C., Nanostruct. Mater. 9, 13 (1997).Google Scholar
31.Welham, N.J., J. Mater. Res. 13, 1607 (1998).Google Scholar
32.Welham, N.J., J. Mater. Sci. 33, 1795 (1998).CrossRefGoogle Scholar
33.Jenkins, R., Rev. Mineral. 20, 47 (1989).Google Scholar
34.Menoni, C.S., Hu, J.Z., and Spain, I.L., Phys. Rev. B 34, 362 (1986).CrossRefGoogle Scholar
35.Hong, S. and Chou, M.Y., Phys. Rev. B: Condens. Matter 57, 6262 (1998).CrossRefGoogle Scholar
36.Fortner, J., Yu, R.Q., and Lannin, J.S., Phys. Rev. B 42, 7610 (1990).Google Scholar
37.Fujii, M., Hayashi, S., and Yamamoto, K., Appl. Phys. Lett. 57, 2692 (1990).Google Scholar
38.Heath, J.R., Shiang, J.J., and Alivisatos, A.P., J. Chem. Phys. 101, 1607 (1994).CrossRefGoogle Scholar
39.Stella, A., Tognini, P., Bottani, C.E., Milani, P., Cheyssac, P., and Kofman, R., Thin Solid Films 318, 100 (1998).CrossRefGoogle Scholar
40.Bottani, C.E., Mantini, C., Milani, P., Manfredini, M., Stella, A., Tognini, P., Cheyssac, P., and Kofman, R., Appl. Phys. Lett. 69, 2409 (1996).Google Scholar
41.Snyder, R.L. and Bish, D.L., Rev. Mineral. 20, 101 (1989).Google Scholar
42.Nilsson, G. and Nelin, G., Phys. Rev. B 3, 364 (1971).Google Scholar
43.Campbell, I.H. and Fauchet, P.M., Solid State Comm. 58, 739 (1986).CrossRefGoogle Scholar
44.Welham, N.J., Mater. Sci. Eng. A 248, 230 (1998).Google Scholar
45.Welham, N.J., J. Mater. Sci. 34, 21 (1999).Google Scholar
46.Welham, N.J., J. Mater. Res. 14, 619 (1999).CrossRefGoogle Scholar
47.Welham, N.J., Mater. Sci. Technol. 15, 456 (1999).Google Scholar
48.Wills, B.A., Mineral Processing Technology (Pergamon Press, Oxford, United Kingdom, 1992), p. 855.Google Scholar
49.Gutman, E.M., Mechanochemistry of Materials (Cambridge International Science Publishing, Cambridge, United Kingdom, 1998), p. 212.Google Scholar
50.Tkacova, K., Heegn, H., and Stevulova, N., Int. J. Min. Proc. 40, 17 (1993).CrossRefGoogle Scholar
51.Maurice, D. and Courtney, T.H., Metall. Mater. Trans. A 27, 1973 (1996).Google Scholar