Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T16:09:45.747Z Has data issue: false hasContentIssue false

Flash synthesis of zirconia nanoparticles by microwave forced hydrolysis

Published online by Cambridge University Press:  31 January 2011

K. Bellon
Affiliation:
GERM (Groupe dapos;Etudes et de Recherches en Microondes)/Laboratoire de Recherche sur la Réactivité des Solides (LRRS) Unité Mixte de Recherche (UMR) 5613 Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France
D. Chaumont
Affiliation:
GERM (Groupe dapos;Etudes et de Recherches en Microondes)/Laboratoire de Recherche sur la Réactivité des Solides (LRRS) Unité Mixte de Recherche (UMR) 5613 Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France
D. Stuerga
Affiliation:
GERM (Groupe dapos;Etudes et de Recherches en Microondes)/Laboratoire de Recherche sur la Réactivité des Solides (LRRS) Unité Mixte de Recherche (UMR) 5613 Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France
Get access

Abstract

Forced hydrolysis preparation of zirconia sols and powders by microwave heating of zirconium tetrachloride solutions at temperatures equal to 180 °C leads in a few minutes to monodispersed nanoscale zirconia particles. Synthesis was performed in a microwave reactor called the RAMO system. This microwave reactor was designed by the authors. This flash-synthesis process combines the advantages of forced hydrolysis (homogeneous precipitation) and microwave heating (very fast heating rates). The sols and powders were characterized by x-ray diffraction,photon correlation spectroscopy (PCS), small-angle x-ray scattering, and transmission electron microscopy. Sols are colloidally stable, which means that after 6 months no sedimentation is observed and the size distribution given by PCS measurements has not changed. For all synthesis conditions (with or without HCl, zirconium salt concentration, and synthesis time), zirconia polycrystalline particles were produced. According to the different analyses, these zirconia polycrystalline particles were constituted of aggregates of small primary clusters.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dai, J.Y., Ong, H.C., and Chang, R.P.H., J. Mater. Res. 14, 1329 (1999).CrossRefGoogle Scholar
2Belot, J.A., McNeely, R.J., Wang, A., Reedy, C.J., Marks, T.J., Yap, G.P.A., and Rheingold, A.L., J. Mater. Res. 14, 12 (1999).CrossRefGoogle Scholar
3Si, J., Desu, S.B., and Tsai, C.Y., J. Mater. Res. 9, 1721 (1994).CrossRefGoogle Scholar
4Gould, B.J., Povey, I.M., Pemble, M.E., and Flavell, W.R., J. Mater. Chem. 4, 1815 (1994).CrossRefGoogle Scholar
5Kim, E.T. and Yoon, S.G., Thin Solid Films 227, 7 (1993).CrossRefGoogle Scholar
6Kao, A.S. and Gorman, G.L., J. Appl. Phys. 67, 3826 (1990).CrossRefGoogle Scholar
7Heuer, A.H., J. Am. Ceram. Soc. 70, 689 (1987).CrossRefGoogle Scholar
8Shi, J.L., J. Mater. Res. 14, 1389 (1999).CrossRefGoogle Scholar
9Ramamoorthy, R., Ramasamy, S., and Sundararaman, D., J. Mater. Res. 14, 90 (1999).CrossRefGoogle Scholar
10Matijevic, E., Pure Appl. Chem. 60, 1479 (1988).CrossRefGoogle Scholar
11Chen, S.L., Dong, P., Yang, G.H., and Yang, J.J., Ind. Eng. Chem. Res. 35, 4487 (1996).CrossRefGoogle Scholar
12Matijevic, E., Acc. Chem. Res. 14, 22 (1981).CrossRefGoogle Scholar
13Clearfield, A., Inorg. Chem. 3, 146 (1964).CrossRefGoogle Scholar
14Murase, Y. and Kato, E., J. Am. Ceram. Soc. 66, 196 (1983).CrossRefGoogle Scholar
15Morgan, P.E.D., J. Am. Ceram. Soc. 67, C204 (1984).CrossRefGoogle Scholar
16Blesa, M.A., Maroto, A.J.G., Passaggio, S.I., Figliolia, N.E., and Rigotti, G., J. Mater. Sci. 20, 4601 (1985).CrossRefGoogle Scholar
17Hu, M.Z.C., Harris, M.T., and Byers, C.H., J. Colloid Interface Sci. 198, 87 (1998).CrossRefGoogle Scholar
18Rigneau, P., Bellon, K., Zahreddine, I., and Stuerga, D., Eur. Phys. J. AP 7, 41 (1999).CrossRefGoogle Scholar
19Rigneau, P., Bellon, K., and Stuerga, D., in Second European Work-shop on Microwave Processing of Materials (Second European Workshop on Microwave Processing of Materials Proceedings, Karlsruhe, Germany, 1997), (M. Willert-Porada, Karlsruhe, Germany), p. 101.Google Scholar
20Rigneau, P., Bellon, K., and Stuerga, D., in Sixth International Conference on Microwave and High Frequency Heating (Sixth International Conference on Microwave and High Frequency Heating Proceedings, Fermo, Italy, 1997), (G. Breccia, Fermo, Italy), p. 465.Google Scholar
21Daichuan, D., Pinjie, H., and Shushan, D., Mater. Res. Bull. 30, 531 (1995).CrossRefGoogle Scholar
22Daichuan, D., Pinjie, H., and Shushan, D., Mater. Res. Bull. 30, 537 (1995.)Google Scholar
23Moon, Y.T., Kim, D.K., and Kim, C.H., J. Am. Ceram. Soc. 78, 1103 (1995).CrossRefGoogle Scholar
24Rodriguez-Clemente, R. and Gomez-Morales, J., J. Cryst. Growth 169, 339 (1996).CrossRefGoogle Scholar
25Ma, Y., Vileno, E., Suib, S.L., and Dutta, P.K., Chem. Mater. 9, 3023 (1997).CrossRefGoogle Scholar
26Komarneni, S., Li, Q.H., and Roy, R., J. Mater. Chem. 4, 1903 (1994).CrossRefGoogle Scholar
27Girnus, I., Pohl, M-M., Richter-Mendau, J., Schneider, M., Noack, M., Venzke, D., and J. Caro. Adv. Mater. 7, 711 (1995).CrossRefGoogle Scholar
28Stuerga, D. and Gaillard, P., Tetrahedron 52, 5505 (1996).CrossRefGoogle Scholar
29Randle, K.J., Chem. Ind. 19, 74 (1980).Google Scholar
30De Jaeger, N., Demeyere, H., Finsy, R., Sneyers, R., Vanderdeelen, J., Van Der Meeren, P., and Van Laethem, M., Part. Part. Syst. Charact. 8, 179 (1991).CrossRefGoogle Scholar
31Finsy, R. and De Jaeger, N., Part. Part. Syst. Charact. 8, 187 (1991).CrossRefGoogle Scholar
32Finsy, R., De Jaeger, N., Sneyers, R., and E. Geladé, Part. Part. Syst. Charact. 9, 125 (1992).CrossRefGoogle Scholar
33Clearfield, A. and Vaughan, P.A., Acta Crystallogr. 9, 555 (1956).CrossRefGoogle Scholar
34Mak, T.C.W., Can. J. Chem. 46, 3491 (1968).CrossRefGoogle Scholar
35Muha, G.M. and Vaughan, P.A., J. Chem. Phys. 33, 194 (1960).CrossRefGoogle Scholar
36Aberg, M., Acta Chem. Scand. B 31, 171 (1977).CrossRefGoogle Scholar
37Matijevic, E., Langmuir 2, 12 (1986).CrossRefGoogle Scholar