Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T09:31:56.306Z Has data issue: false hasContentIssue false

Ferromagnetic resonance on Ni nanowire arrays

Published online by Cambridge University Press:  27 July 2011

Mircea Chipara*
Affiliation:
Department of Physics and Geology, The University of Texas—Pan American, Edinburg, Texas 78541
Ralph Skomski
Affiliation:
Department of Physics and Astronomy, Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588
Roger Kirby
Affiliation:
Department of Physics and Astronomy, Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588
David J. Sellmyer
Affiliation:
Department of Physics and Astronomy, Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ferromagnetic resonance investigations on Ni nanowires are reported. The angular dependence of the resonance line position is analyzed within a thermodynamic approach that includes shape anisotropy (ellipsoids of revolution), magnetocrystalline anisotropies (cubic and uniaxial), and dipole–dipole interactions. The results are supported by hysteresis loops, obtained on the same sample.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

1.Aharoni, A.: Effect of surface anisotropy on the exchange resonance modes. J. Appl. Phys. 81, 830 (1997).CrossRefGoogle Scholar
2.Skomski, R., Zeng, H., Zheng, M., and Sellmyer, D.J.: Magnetic localization in transition-metal nanowires. Phys. Rev. B 62, 3900 (2000).CrossRefGoogle Scholar
3.Rajagopalan, S. and Furdyna, J.K.: Magnetic dimensional resonances in Fe3O4 spheres. Phys. Rev. B 39, 4 (1989).CrossRefGoogle ScholarPubMed
4.Dubois, J., Colin, J., Duvail, J.L., and Piraux, L.: Evidence for strong magnetoelastic effects in Ni nanowires embedded in polycarbonate membranes. Phys. Rev. B 61, 14315 (2000).CrossRefGoogle Scholar
5.Branicio, P.S. and Rino, J.P.: Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study. Phys. Rev. B 62, 16950 (2000).CrossRefGoogle Scholar
6.Vonsovskii, S.V.: Magnetism (John Wiley, New York, 1974).Google Scholar
7.Morrish, A.H.: The Physical Principles of Magnetism (John Wiley, New York, 1965).Google Scholar
8.Goglio, G., Pignard, S., Radulescu, A., Piraux, L., Huinen, I., Vanhoenacker, D., and Vorst, A.V.: Microwave properties of metallic nanowires. Appl. Phys. Lett. 75, 1769 (1999).CrossRefGoogle Scholar
9.Costa-Kramer, J.L.: Conductance quantization at room temperature in magnetic and nonmagnetic metallic nanowires. Phys. Rev. B 55, R4875 (1997).CrossRefGoogle Scholar
10.Oropesa, A.E., Demand, M., Piraux, L., Huynen, I., and Ebels, U.: Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B 63, 104415 (2001).CrossRefGoogle Scholar
11.Zeng, H., Zheng, M., Skomski, R., Sellmyer, D. J., Liu, Y., Menon, L., and Bandyopdadhyay, S.: Magnetic properties of self-assembled Co nanowires of varying length and diameter. J. Appl. Phys. 87, 4718 (2000) .CrossRefGoogle Scholar
12.Ounadjela, K., Ferre, R., Louail, L., George, J.M., Maurice, J.L., Piraux, L., and Dubois, S.: Magnetization reversal in cobalt and nickel electrodeposited nanowires. J. Appl. Phys. 81, 5455 (1997).CrossRefGoogle Scholar
13.Meier, J., Doudin, B., and Ansermet, J-Ph.: Magnetic properties of nanosized wires. J. Appl. Phys. 79, 6010 (1996).CrossRefGoogle Scholar
14.Vonsovski, V.: Ferromagnetic Resonance (Pergamon Press, Oxford, 1966).Google Scholar
15.Aharoni, A.: Introduction to the Theory of Ferromagnetism (Oxford University Press, Oxford, 1996).Google Scholar
16.Brown, W.F. Jr.: Micromagnetics, domains, and resonance. J. Appl. Phys. 30, 625 (1959).CrossRefGoogle Scholar
17.Ebels, U., Duvail, J-L., Wigen, P.E., Piraux, L., Buda, L.D., and Ounadjella, K.: Ferromagnetic resonance studies of Ni nanowire arrays. Phys. Rev. B 64, 144421 (2001).CrossRefGoogle Scholar
18.Wegrowe, J.E., Kelly, D., Franck, A., Gilbert, S.E., and Ansermet, J.: Magnetoresistance of Ferromagnetic Nanowires. Phys. Rev. Lett. 82, 3681 (1999).CrossRefGoogle Scholar
19.Jaccard, Y., Guittienne, Ph., Kelly, D., Wegrowe, J., and Ansermet, J.: Uniform magnetization rotation in single ferromagnetic nanowires. Phys. Rev. B 62, 1141 (2000).CrossRefGoogle Scholar
20.Sellmyer, D.J., Zheng, M., and Skomski, R.: Magnetism of Fe, Co, and Ni nanowires in self-assembled arrays. J. Phys. Condens. Matter. 13, R433 (2001).CrossRefGoogle Scholar
21.Paulus, P.M., Luis, F., Kroll, M., Schmid, G., and de Longh, L.J.: Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. J. Magn. Magn. Mater. 24, 180 (2001).CrossRefGoogle Scholar
22.Cao, H., Tie, C., Xu, Z., Hong, J., and Sang, H.: Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior. Appl. Phys. Lett. 78, 1592 (2001).CrossRefGoogle Scholar
23.Akhiezer, A.I., Bar’yakhtar, V.G., and Peletminskii, S.V.: Spin Waves (North Holland, Amsterdam, 1968).Google Scholar
24.Aharoni, A.: Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 69, 7762 (1991).CrossRefGoogle Scholar
25.Skomski, R., Chipara, M., and Sellmyer, D.J.: Spin-wave modes in magnetic nanowires. J. Appl. Phys. 93, 7604 (2003).CrossRefGoogle Scholar
26.Chipara, M., Skomski, R., and Sellmyer, D. J.: Magnetic modes in Ni nanowires. J. Magn. Magn. Mater. 249, 246 (2002).CrossRefGoogle Scholar
27.Maeda, A., Kume, M., Ogura, T., Kuroki, K., Yamada, T., Nishikawa, M., and Harada, Y.: Magnetic wire and box arrays. J. Appl. Phys. 76, 6667 (1994).CrossRefGoogle Scholar
28.Skomski, R. and Coey, J.M.D.: Permanent Magnetism (Institute of Physics, Bristol 1999).Google Scholar
29.Wernsdorfer, W., Hasselbach, K., Benoit, A., Barbara, B., Doudin, B., Meier, J., Ansermet, J., and Mailly, D.: Measurements of magnetization switching in individual nickel nanowires. Phys. Rev. B 55, 11552 (1997).CrossRefGoogle Scholar
30.Jorritsma, J. and Mydosh, J.A.: Temperature-dependent magnetic anisotropy in Ni nanowires. J. Appl. Phys. 84, 901 (1998).CrossRefGoogle Scholar
31.Sun, L., Searson, P.C., and Chien, C.L.: Electrochemical deposition of nickel nanowire arrays in single crystal mica films. J. Appl. Phys. 74, 2803 (1999).Google Scholar
32.Goglio, G., Pignard, S., Radulescu, A., Piraux, L., Huinen, I., Vanhoenacker, D., and Vorst, A.V.: Microwave properties of metallic nanowires. Appl. Phys. Lett. 75, 1769 (1999).CrossRefGoogle Scholar
33.Dubois, J., Colin, J., Duvail, J.L., and Piraux, L.: Evidence for strong magnetoelastic effects in Ni nanowires embedded in polycarbonate membranes. Phys. Rev. B 61, 14315 (2000).CrossRefGoogle Scholar
34.Zheng, M., Menon, L., Zeng, H., Liu, Y., Bandyopadhyay, S., Kirby, R.D., and Sellmyer, D.J.: Magnetic properties of Ni nanowires in self-assembled arrays. Phys. Rev. B 62, 12282 (2000).CrossRefGoogle Scholar
35.Oropesa, A.E., Demand, M., Piraux, L., Huynen, I., and Ebels, U.: Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B 63, 104415 (2001).CrossRefGoogle Scholar