Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:58:04.844Z Has data issue: false hasContentIssue false

The Faraday effect in diamagnetic glasses

Published online by Cambridge University Press:  31 January 2011

Jianrong Qiu
Affiliation:
Hirao Active Glass Project, ERATO, JST-C, Keihanna Plaza, Seika-cho, Kyoto 61902, Japan
Kazuyuki Hirao
Affiliation:
Hirao Active Glass Project, ERATO, JST-C, 15 Morimoto-cho, Shimogamo, Sakyo-ku Kyoto 606, Japan, and Division of Material Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606–01, Japan
Get access

Abstract

The wavelength dispersions of the Faraday effect in typical diamagnetic glasses, i.e., silica, borate, silicate, tellurite, lead-bismuth-gallate, and As2S3, have been examined. The Verdet constant of the glasses decreases with increasing wavelength in the longer wavelength region of the absorption edge of the glasses, while it increases with increasing optical bandgap of the glasses. These phenomena have been successfully explained based on the Becquerel theory. A guiding principle in designing a diamagnetic glass with a high Verdet constant is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.George, N., Waniek, R. W., and Lee, S. W., Appl. Opt. 4, 253 (1965).CrossRefGoogle Scholar
2.Fletcher, P. C. and Weisman, D. L., Appl. Opt. 4, 867 (1965).CrossRefGoogle Scholar
3.Fork, R. L. and Bradley, L. C., Appl. Opt. 3, 137 (1964).CrossRefGoogle Scholar
4.Borrelli, N. F., J. Chem. Phys. 41, 3289 (1964).Google Scholar
5.Shafer, M. W. and Suit, J. C., J. Am. Ceram. Soc. 49, 261 (1966).CrossRefGoogle Scholar
6.Qiu, J., Qiu, J. B., Higuchi, H., Kawamoto, Y., and Hirao, K., J. Appl. Phys. 80, 5297 (1996).CrossRefGoogle Scholar
7.Qiu, J., Tanaka, K., Sugiomoto, N., and Hirao, K., J. Non-Cryst. Solids 213 – 214, 193 (1997).CrossRefGoogle Scholar
8.Qiu, J. and Hirao, K., Jpn. J. Appl. Phys. 35, 1677 (1996).CrossRefGoogle Scholar
9.Kohli, J. H., Rare Elements in Glasses (Trans Tech Publications, Aedermannsdorf, 1994), Vols. 94–95, p. 125.Google Scholar
10.Sakamoto, K. and Yamashita, T., New Glass 10, 34 (1995).Google Scholar
11.Vleck, J. H. Van and Hebb, M. H., Phys. Rev. 46, 17 (1934).Google Scholar
12.Becquerel, H., Compt. Rend. 125, 679 (1897).Google Scholar
13.Wood, R. W., Physical Optics (Macmillan Company, New York, 1936), Vol. 3, p. 469.Google Scholar
14.Fujino, S., Takebe, H., and Morinaga, K., J. Am. Ceram. Soc. 78, 1179 (1995).Google Scholar
15.Qiu, J. and Hirao, K., unpublished.Google Scholar