Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:47:46.691Z Has data issue: false hasContentIssue false

Facile Sol-gel Synthesis of Porous Silicas Using Poly(propylene)imine Dendrimers as Templates

Published online by Cambridge University Press:  31 January 2011

Gustavo Larsen*
Affiliation:
Department of Chemical Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0126
Edgar Lotero
Affiliation:
Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0304
Manuel Marquez
Affiliation:
Los Alamos National Laboratory, Chemical Science and Technology Division, Los Alamos, New Mexico 87545, and Nanotechnology Laboratory (NanoteK), Research and Development, Kraft Foods Inc., 801 Waukegan Road, Glenview, Illinois 60025
*
a)Address all correspondence to this author.
Get access

Abstract

Commercially available poly(propylene)imine (DAB-Am-32 and DAB-Am-64) dendrimers were used as single-molecule templates to tailor the porosity of silicas via a nonacidic sol-gel method. X-ray diffraction on both the as-prepared (oven-dried at 373 K) and the calcined (833 K) materials revealed that modest contraction took place on template removal and that the cavities created did not achieve three-dimensional ordering under the current synthesis conditions. Transmission electron microscopy of “Pt-stained” samples supported this picture. A modified Horvath–Kawazoe analysis of the argon adsorption isotherms indicated that DAB-Am-64 is a much more effective template than DAB-Am-32. Pyrolysis and oxidation protocols for template removal are also presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schnitt, K.D., Chu, C.T-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., and Schlenker, J.L., J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
2.Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S., Nature 359, 710 (1992).Google Scholar
3.Zhao, E., Hernandez, O., Pacheco, G., Hardcastle, S., and Fripiat, J.J., J. Mater. Chem. 8, 1635 (1998).Google Scholar
4.Huang, Y-Y., McCarthy, T.J., and Sachler, W.M.H, Appl. Catal. A 163, 245 (1997).Google Scholar
5.Stone, V.F. and Davis, R.J., Chem. Mater. 10, 1468 (1998).Google Scholar
6.Antonelli, D.M. and Ying, J.Y., Angew. Chem. 34, 2014 (1995).CrossRefGoogle Scholar
7.Larsen, G., Lotero, E., Nabity, M., Petkovic, L.M., and Shobe, D.S., J. Catal. 164, 246 (1996).CrossRefGoogle Scholar
8.Zhang, W., Froba, M., Wang, J., Tanev, P.T., Wong, J., and Pinnavaia, T.J., J. Am. Chem. Soc. 118, 9164 (1996).Google Scholar
9.Katz, A. and Davis, M.E., Nature 403, 286 (2000).CrossRefGoogle Scholar
10.Morihara, K., Kurihara, S., and Suzuki, J., Bull. Chem. Soc. Jpn. 61, 3991 (1988).Google Scholar
11.Morihara, K., Takiguchi, M., and Shimada, T., Bull. Chem. Soc. Jpn. 67, 1078 (1994).CrossRefGoogle Scholar
12.Lee, S-W., Ichinose, I., and Kunitake, T., Langmuir 14, 2857 (1998).CrossRefGoogle Scholar
13.Chujo, Y., Matsuki, H., Kure, S., Saegusa, T., and Yazawa, T., J. Chem. Soc. Chem. Commun. 635 (1994).CrossRefGoogle Scholar
14.Fan, H., Zhou, Y., and Lopez, G.P., Adv. Mater. 9, 728 (1997).Google Scholar
15.Kazakova, V.V., Myakushev, V.D., Strelkova, T.V., Gvazava, N.G., and Muzafarov, A.M., Dokl. Akad. Nauk 349, 486 (1996).Google Scholar
16.Hendrick, J.L., Hawker, C.J., Trollsas, M., Remenar, J., Yoon, R., and Miller, R.D., in Flat-Panel Display Materials —1998, edited by Parsons, G.N., Tsai, C-C., Fahlen, T.S. and Seager, C.H. (Mater. Res. Soc. Symp. Proc. 519, Warrendale, PA, 1998), p. 65.Google Scholar
17.Balogh, L., de Leuze-Jallouli, A., Dvornic, P.R., Owen, M.J., Sperz, S.V., and Spindler, R., U.S. Patent No. 5 938 934 (17 August 1999).Google Scholar
18.Larsen, G., Lotero, E., and Marquez, M., J. Phys. Chem. B 104, 4840 (2000).Google Scholar
19.Wei, Y., Xu, J., Dong, H., Dong, J.H., Kiu, K., and Jansen-Varnum, S.A., Chem. Mater. 11, 2023 (1999).Google Scholar
20.Kriesel, J.W. and Tilley, T.D., Chem. Mater. 11, 1190 (1999).CrossRefGoogle Scholar
21.Larsen, G., Lotero, E., and Marquez, M., Chem. Mater. 12, 1513 (2000).Google Scholar
22.Cheng, L.S., and Yang, R.T., Chem. Eng. Sci. 49, 2599 (1994).Google Scholar
23.Horvath, G. and Kawazoe, K., J. Chem. Eng. Jpn. 16, 470 (1983).CrossRefGoogle Scholar
24.Lotero, E., Vu, D., Nguyen, C., Wagner, J., and Larsen, G., Chem. Mater. 10, 3756 (1998).CrossRefGoogle Scholar
25.Scherrenberg, R., Coussens, B., van Vliet, P., Edouard, G., Brackman, J., de Brabander, E., and Mortensen, K., Macromolecules 31, 456 (1998).Google Scholar
26.Brinker, C.J. and Scherer, G.W., J. Non-Cryst. Solids 70, 301 (1985).CrossRefGoogle Scholar