Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T17:26:15.978Z Has data issue: false hasContentIssue false

A facile preparation of hyperbranched copper phthalocyanine microspheres and their wideband microwave absorption properties

Published online by Cambridge University Press:  11 June 2013

Rui Zhao
Affiliation:
Research Branch of Functional Polymer Composites, Institute of Microelectronic & Solid State Electronic, University of Electronic Science and Technology of China, High Temperature Resistant Polymer and Composites of Key Laboratory of Sichuan Province, Chengdu 610054, People’s Republic of China
Hailong Tang
Affiliation:
Research Branch of Functional Polymer Composites, Institute of Microelectronic & Solid State Electronic, University of Electronic Science and Technology of China, High Temperature Resistant Polymer and Composites of Key Laboratory of Sichuan Province, Chengdu 610054, People’s Republic of China
Heng Guo
Affiliation:
Research Branch of Functional Polymer Composites, Institute of Microelectronic & Solid State Electronic, University of Electronic Science and Technology of China, High Temperature Resistant Polymer and Composites of Key Laboratory of Sichuan Province, Chengdu 610054, People’s Republic of China
Yajie Lei
Affiliation:
Research Branch of Functional Polymer Composites, Institute of Microelectronic & Solid State Electronic, University of Electronic Science and Technology of China, High Temperature Resistant Polymer and Composites of Key Laboratory of Sichuan Province, Chengdu 610054, People’s Republic of China
Xiao-Bo Liu*
Affiliation:
Research Branch of Functional Polymer Composites, Institute of Microelectronic & Solid State Electronic, University of Electronic Science and Technology of China, High Temperature Resistant Polymer and Composites of Key Laboratory of Sichuan Province, Chengdu 610054, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hyperbranched copper phthalocyanine (CuPc) with uniform spherical morphology has been firstly obtained by ethylene glycol solvothermal synthetic route. The highly dispersed spherical CuPc aggregates with a diameter of ∼500 nm. X-ray diffraction indicated that the molecules were stacked into one-dimensional b-axis aggregate. In addition, the split Soret band together with the broadened and blue-shifted Q-bands in the optical spectra suggested the H (face-to-face) type of interactions in the arrangement of macrocycles in a dense-packed structure. Due to its good symmetrical structure and unique morphology, the hyperbranched spherical CuPc showed excellent broadband microwave absorption behaviors in a frequency of 2–18 GHz. Over an absorber of 5 mm thickness, an absorption bandwidth of 12 GHz corresponding to reflection loss below −10 dB can be obtained. The high value of microwave reflection about −50 dB at the frequency of 16.5 GHz also suggested that the hyperbranched spherical CuPc can be used as promising microwave absorbing materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meng, F., Zhao, R., Xu, M., Zhan, Y., Lei, Y., Zhong, J., and Liu, X.: Fe–phthalocyanine oligomer/Fe3O4 nano-hybrid particles and their effect on the properties of polyarylene ether nitriles magnetic nanocomposites. Colloids Surf., A 375, 245251 (2011).CrossRefGoogle Scholar
Zhang, X.F., Dong, X.L., Huang, H., Liu, Y.Y., Wang, W.N., Zhu, X.G., Lv, B., Lei, J.P., and Lee, C.G.: Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89, 053115053118 (2006).CrossRefGoogle Scholar
Lee, C.C. and Chen, D.H.: Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles. Appl. Phys. Lett. 90, 193102 (2007).CrossRefGoogle Scholar
Ohkoshi, S., Kuroki, S., Sakurai, S., Matsumoto, K., Sato, K., and Sasaki, S.: A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets. Angew. Chem. Int. Ed. 46, 83928395 (2007).CrossRefGoogle ScholarPubMed
Chen, Y.J., Gao, P., Wang, R.X., Zhu, C.L., Wang, L.J., Cao, M.S., and Jin, H.B.: Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 113, 1006110064 (2009).CrossRefGoogle Scholar
Chen, Y.J., Gao, P., Zhu, C.L., Wang, R.X., Wang, L.J., Cao, M.S., and Fang, X.Y.: Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J. Appl. Phys. 106, 054303 (2009).CrossRefGoogle Scholar
Liu, Q., Zhang, D., and Fan, T.: Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 93, 013110013112 (2008).CrossRefGoogle Scholar
Namai, A., Sakurai, S., Nakajima, M., Suemoto, T., Matsumoto, K., Goto, M., Sasaki, S., and Ohkoshi, S.: Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J. Am. Chem. Soc. 131, 1170 (2009).CrossRefGoogle ScholarPubMed
Higuchi, T., Murayama, T., Itoh, E., and Miyairi, K.: Electrical properties of phthalocyanine based field effect transistors prepared on various gate oxides. Thin Solid Films 499, 374379 (2006).CrossRefGoogle Scholar
Yasuda, T. and Tsutsui, T.: Organic field-effect transistors based on high electron and ambipolar carrier transport properties of copper-phthalocyanine. Chem. Phys. Lett. 402, 395398 (2005).CrossRefGoogle Scholar
Schlebusch, C., Morenzin, J., Kessler, B., and Eberhardt, W., Organic photoconductors with C60 for xerography. Carbon 37, 717723 (1999).CrossRefGoogle Scholar
Tang, Q.X., Li, L.Q., Song, Y.B., Liu, Y.L., Li, H.X., Xu, W., Liu, Y.Q., Hu, W.P., and Zhu, D.B.: Photo switches and phototransistors of organic single crystalline sub-micro/nanometer ribbons. Adv. Mater. 19, 2624 (2007).CrossRefGoogle Scholar
Cao, W.F., Tu, H.Y., Wang, J., Tian, H., Wang, Y., Gu, D.H., and Gan, F.X.: Synthesis and optical properties of axially bromo-substituted subphthalocyanines. Dyes Pigm. 54, 213219 (2002).CrossRefGoogle Scholar
Yum, J.H., Jang, S.R., Baker, R.H., Grätzel, M., Cid, J.J., Torres, T., and Nazeeruddin, M.K.: Effect of coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells. Langmuir 24, 56365640 (2008).CrossRefGoogle ScholarPubMed
Troshin, P.A., Koeppe, R., Peregudov, A.S., Peregudova, S.M., Egginger, M., Lyubovskaya, R.N., and Sariciftci, N.S.: Supramolecular association of pyrrolidinofullerenes bearing chelating pyridyl groups and zinc phthalocyanine for organic solar cells. Chem. Mater. 19, 53635372 (2007).CrossRefGoogle Scholar
Agboola, B.O. and Ozoemena, K.I.: Efficient electrocatalytic detection of epinephrine at gold electrodes modified with self-assembled metallo-ctacarboxyphthalocyanine complexes. Electroanalysis 20, 16961707 (2008).CrossRefGoogle Scholar
Bedioui, F., Griveau, S., Nyokong, T., Appleby, A.J., Caro, C.A., Gulppi, M., Ochoa, G., and Zagal, J.H.: Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys. Chem. Chem. Phys. 9, 33833396 (2007).CrossRefGoogle ScholarPubMed
Wang, X., Zhuang, J., Peng, Q., and Li, Y.: A general strategy for nanocrystal synthesis. Nature 437, 121124 (2005).CrossRefGoogle ScholarPubMed
Gao, J., Cheng, C., Zhou, X., Li, Y., Xu, X., Du, X., and Zhang, H.: Synthesis of size controllable cu-phthalocyanine nanofibers by simple solvent diffusion method and their electrochemical properties. J. Colloid Interface Sci. 342, 225228 (2010).CrossRefGoogle ScholarPubMed
Guo, K., Yoshimoto, S., and Itaya, K.: Two-dimensional self-organization of phthalocyanine and porphyrin: Dependence on the crystallographic orientation of Au. J. Am. Chem. Soc. 125, 1497614977 (2003).Google Scholar
Wu, L., Wang, Q., Lu, J., Bian, Y., Jiang, J., and Zhang, X.: Helical nanostructures self-assembled from optically active phthalocyanine derivatives bearing four optically active binaphthyl moieties: Effect of metal-ligand coordination on the morphology, dimension, and helical pitch of self-assembled nanostructures. Langmuir 26, 74897497 (2010).CrossRefGoogle ScholarPubMed
Zhao, R., Jia, K., Wei, J., Pu, J., and Liu, X.: Hierarchically nanostructured Fe3O4 microspheres and their novel microwave electromagnetic properties. Mater. Lett. 64, 457 (2010).CrossRefGoogle Scholar
Meng, F., Zhao, R., Zhan, Y., Lei, Y., Zhong, J., and Liu, X.: One-step synthesis of Fe-phthalocyanine/Fe3O4 hybrid microspheres. Mater. Lett. 65, 264 (2011).CrossRefGoogle Scholar
Meng, F., Zhao, R., Zhan, Y., Lei, Y., Zhong, J., and Liu, X.: Preparation and microwave absorption properties of Fe-phthalocyanine oligomer/Fe3O4 hybrid microspheres. Appl. Surf. Sci. 257, 5000 (2011).CrossRefGoogle Scholar
Wei, J., Zhao, R., Zhan, Y., Meng, F., Yang, X., Xu, M., and Liu, X.: One-step solvothermal syntheses and microwave electromagnetic properties of organic magnetic resin/Fe3O4 hybrid nanospheres. Appl. Surf. Sci. 258, 67056711 (2012).CrossRefGoogle Scholar
Guo, M., Yan, X., Kwon, Y., Hayakawa, T., Kakimoto, M., and Goodson, T. III: High frequency dielectric response in a branched phthalocyanine. J. Am. Chem. Soc. 128, 1482014821 (2006).CrossRefGoogle Scholar
Snow, A.W. and Jarvis, N.L.: Molecular association and monolayer formation of soluble phthalocyanine compounds. J. Am. Chem. Soc. 106, 47064711 (1984).CrossRefGoogle Scholar
Chen, Z., Zhong, C., Zhang, Z., Li, Z., Niu, L., Bin, Y., and Zhang, F.: Photoresponsive j-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity. J. Phys. Chem. B 112, 73877389 (2008).CrossRefGoogle ScholarPubMed
Zhan, Y., Yang, X., Meng, F., Wei, J., Zhao, R., and Liu, X.: Controllable synthesis, magnetism and solubility enhancement of graphene nanosheets/magnetite hybrid material by covalent bonding. J. Colloid Interface Sci. 363, 98104 (2011).CrossRefGoogle ScholarPubMed
Camp, P.J., Jones, A.C., Neely, R.K., and Speirs, N.M.: Aggregation of copper(II) tetrasulfonated phthalocyanine in aqueous salt solutions. J. Phys. Chem. A 106, 1072510732 (2002).CrossRefGoogle Scholar
Xu, Z., Li, H., Li, K., Kuang, Y., Wang, Y., Fu, Q., Cao, Z., and Li, W.: Carbon nanotube-templated copper phthalocyanine derivative assemblies via solid-phase synthesis: Effects of hydrogen bond on the structure of the assemblies. Cryst. Growth Des. 9, 4136 (2009).CrossRefGoogle Scholar
Luo, Y., Gao, J., Cheng, C., Sun, Y., Du, X., Xu, G., and Wang, Z.: Fabrication micro-tube of substituted Zn–phthalocyanine in large scale by simple solvent evaporation method and its surface photovoltaic properties. Org. Electron. 9, 466 (2008).CrossRefGoogle Scholar
Fox, J., Katz, T., Elshocht, S., Verbiest, T., Kauranen, M., Persoons, A., Thongpanchang, T., Krauss, T., and Brus, L.: Synthesis, self-assembly, and nonlinear optical properties of conjugated helical metal phthalocyanine derivatives. J. Am. Chem. Soc. 121, 34533459 (1999).CrossRefGoogle Scholar
Debe, M.K. and Kan, K.K.: Effect of gravity on copper phthalocyanine thin films II: Spectroscopic evidence for a new oriented thin film polymorph of copper phthalocyanine grown in a microgravity environment. Thin Solid Films 186, 289325 (1990).CrossRefGoogle Scholar
Lippel, P.H., Wilson, R.J., Miller, M.D., Wöll, C., and Chiang, S.: High-resolution imaging of copper-phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 62, 171174 (1989).CrossRefGoogle ScholarPubMed
Yusoff, A.N., Abdullah, M.H., Ahmad, S.H., Jusoh, S.F., Mansor, A.A., and Hamid, S.A.A.: Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys. 92, 876883 (2002).CrossRefGoogle Scholar
Ma, Z., Cao, C., Liu, Q., and Wang, J.: A new method to calculate the degree of electromagnetic impedance matching in one-layer microwave absorbers. Chin. Phys. Lett. 29, 038401038405 (2012).CrossRefGoogle Scholar