Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T11:56:25.563Z Has data issue: false hasContentIssue false

Face-centered-cubic titanium: An artifact in titanium/aluminum multilayers

Published online by Cambridge University Press:  31 January 2011

J. Bonevich
Affiliation:
National Institute of Standards and Technology, Metallurgy Division, Gaithersburg, Maryland 20899
D. van Heerden
Affiliation:
Department of Materials Science, The Johns Hopkins University, Baltimore, Maryland 21218
D. Josell
Affiliation:
National Institute of Standards and Technology, Metallurgy Division, Gaithersburg, Maryland 20899
Get access

Abstract

The present investigation is the first comprehensive comparative study of x-ray diffraction (XRD) and transmission electron microscopy (TEM) results to address the important issue of fcc Ti formation in nanoscale multilayers. Ti/Al multilayers with 7.2 and 5.2 nm composition modulation wavelengths were studied by reflection and transmission XRD as well as transmission electron diffraction (ED), high-resolution TEM, and energy-filtered TEM. Previous reports have claimed deposition of fcc Ti in multilayer systems. Our results demonstrate that the Ti in Ti/Al multilayers deposits in the hcp form and that fcc Ti is merely an artifact of producing specimens for cross-sectional TEM.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Saleh, A. A., Shutthanandan, V., and Smith, R. J., Phys. Rev. B 49, 4908 (1994).CrossRefGoogle Scholar
2.Banerjee, R., Ahuja, R., and Fraser, H. L., Phys. Rev. Lett. 76, 3778 (1996).CrossRefGoogle Scholar
3.Ahuja, R. and Fraser, H. L., J. Electr. Mater. 23, 1027 (1994).CrossRefGoogle Scholar
4.Ahuja, R. and Fraser, H. L., J. Metals 46, 35 (1994).Google Scholar
5.Jankowski, A. F. and Wall, M. A., NanoStruct. Mater. 7, 89 (1996).CrossRefGoogle Scholar
6.Chaudhuri, J., Alyan, S. M., and Jankowski, A. F., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T.P., Sanchez, J. E. Jr, and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 707.Google Scholar
7.van Heerden, D., Josell, D., and Shechtman, D., Acta Mater. 44, 297 (1996).CrossRefGoogle Scholar
8.Shechtman, D., van Heerden, D., and Josell, D., Mater. Lett. 20, 329 (1994).CrossRefGoogle Scholar
9.Josell, D., Shechtman, D., and van Heerden, D., Mater. Lett. 22, 275 (1995).CrossRefGoogle Scholar
10.Jin, O. and Liu, B. X., Mater. Lett. 27, 165 (1996).CrossRefGoogle Scholar
11.Tepper, T., Shechtman, D., van Heerden, D., and Josell, D., Mater. Lett. 35, 100 (1998).CrossRefGoogle Scholar
12.van der Kolk, G. J., Miedema, A. R., and Niessen, A. K., J. Less-Common Met. 145, 1 (1988).CrossRefGoogle Scholar
13.Krivanek, O. L., Gubbens, A. J., Dellby, N., and Meyer, C. E., Microsc. Microanal. Microstruct. 3, 187 (1992).CrossRefGoogle Scholar