Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T16:39:15.677Z Has data issue: false hasContentIssue false

Fabrication of zeolite MFI membranes supported by α-Al2O3 hollow ceramic fifibers for CO2 separation

Published online by Cambridge University Press:  06 June 2013

Songjie Fan
Affiliation:
Department of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People’s Republic of China
Jia Liu
Affiliation:
Department of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People’s Republic of China
Feng Zhang
Affiliation:
Department of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People’s Republic of China
Shuyuan Zhou
Affiliation:
Department of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People’s Republic of China
Fuxing Sun*
Affiliation:
Department of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-performance and continuous zeolite MFI membranes have been successfully fabricated, using in situ hydrothermal synthetic method, on α-Al2O3 hollow ceramic fifibers (HCFs). The CO2 separation properties of the as-prepared MFI membrane are studied by single gas permeation and binary gas permeation of CO2/N2 and CO2/CH4. The separation results show that the membrane exhibits high CO2 selectivity with separation factors of 9.2 and 6.0 for CO2/N2 and CO2/CH4, respectively. A preferred permeance for CO2 in the binary gas mixtures is about 3 × 10−7mol/(m2 s Pa). Furthermore, the supported MFI membrane possesses high mechanical strength, strong thermal stability, and high reproducibility, which are expected to have potential applications in industrial CO2 recycling.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Guo, H., Zhu, G., Li, H., Zou, X., Yin, X., Yang, W., Qiu, S., and Xu, R.: Hierarchical growth of large-scale ordered zeolite silicalite-1 membranes with high permeability and selectivity for recycling CO2. Angew. Chem. 118(42), 7211 (2006).CrossRefGoogle Scholar
Yuan, W., Lin, Y., and Yang, W.: Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers. J. Am. Chem. Soc. 126(15), 4776 (2004).CrossRefGoogle ScholarPubMed
Xomeritakis, G., Lai, Z., and Tsapatsis, M.: Separation of xylene isomer vapors with oriented MFI membranes made by seeded growth. Ind. Eng. Chem. Res. 40(2), 544 (2001).CrossRefGoogle Scholar
Haag, S., Hanebuth, M., Mabande, G.T., Avhale, A., Schwieger, W., and Dittmeyer, R.: On the use of a catalytic H-ZSM-5 membrane for xylene isomerization. Microporous Mesoporous Mater. 96(1), 168 (2006).CrossRefGoogle Scholar
Jeong, B-H., Sotowa, K-I., and Kusakabe, K.: Catalytic dehydrogenation of cyclohexane in an FAU-type zeolite membrane reactor. J. Membr. Sci. 224(1), 151 (2003).CrossRefGoogle Scholar
Wang, Z., Mitra, A., Wang, H., Huang, L., and Yan, Y.: Pure silica zeolite films as low-k dielectrics by spin-on of nanoparticle suspensions. Adv. Mater. 13(19), 1463 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
Liu, Y., Lew, C.M., Sun, M., Cai, R., Wang, J., Kloster, G., Boyanov, B., and Yan, Y.: On-wafer crystallization of ultralow-κ pure silica zeolite films. Angew. Chem. Int. Ed. 48(26), 4777 (2009).CrossRefGoogle ScholarPubMed
Cai, R., Sun, M., Chen, Z., Munoz, R., O'Neill, C., Beving, D.E., and Yan, Y.: Ionothermal synthesis of oriented zeolite AEL films and their application as corrosion-resistant coatings. Angew. Chem. Int. Ed. 47(3), 525 (2008).CrossRefGoogle ScholarPubMed
Li, X., Peng, Y., Wang, Z., and Yan, Y.: Synthesis of highly b-oriented zeolite MFI films by suppressing twin crystal growth during the secondary growth. Cryst. Eng. Comm. 13(11), 3657 (2011).CrossRefGoogle Scholar
Li, S., Demmelmaier, C., Itkis, M., Liu, Z., Haddon, R.C., and Yan, Y.: Micropatterned oriented zeolite monolayer films by direct in situ crystallization. Chem. Mater. 15(14), 2687 (2003).CrossRefGoogle Scholar
Wang, Z. and Yan, Y.: Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization. Chem. Mater. 13(3), 1101 (2001).CrossRefGoogle Scholar
Li, X., Yan, Y., and Wang, Z.: Continuity control of b-oriented MFI zeolite films by microwave synthesis. Ind. Eng. Chem. Res. 49(12), 5933 (2010).CrossRefGoogle Scholar
Mabande, G.T., Ghosh, S., Lai, Z., Schwieger, W., and Tsapatsis, M.: Preparation of b-oriented MFI films on porous stainless steel substrates. Ind. Eng. Chem. Res. 44(24), 9086 (2005).CrossRefGoogle Scholar
Liu, Y., Li, Y., and Yang, W.: Phase-segregation-induced self-assembly of anisotropic MFI microbuilding blocks into compact and highly b-oriented monolayers. Langmuir 27(6), 2327 (2011).CrossRefGoogle ScholarPubMed
Zhang, F-Z., Fuji, M., and Takahashi, M.: In situ growth of continuous b-oriented MFI zeolite membranes on porous α-alumina substrates precoated with a mesoporous silica sublayer. Chem. Mater. 17(5), 1167 (2005).CrossRefGoogle Scholar
Lai, Z. and Tsapatsis, M.: Gas and organic vapor permeation through b-oriented MFI membranes. Ind. Eng. Chem. Res. 43(12), 3000 (2004).CrossRefGoogle Scholar
O’Brien-Abraham, J., Kanezashi, M., and Lin, Y.: A comparative study on permeation and mechanical properties of random and oriented MFI-type zeolite membranes. Microporous Mesoporous Mater. 105(1), 140 (2007).CrossRefGoogle Scholar
Kikuchi, E., Yamashita, K., Hiromoto, S., Ueyama, K., and Matsukata, M.: Synthesis of a zeolitic thin layer by a vapor-phase transport method: Appearance of a preferential orientation of MFI zeolite. Microporous Mater. 11(3), 107 (1997).CrossRefGoogle Scholar
Vilaseca, M., Coronas, J., Cirera, A., Cornet, A., Morante, J., and Santamarıa, J.: Use of zeolite films to improve the selectivity of reactive gas sensors. Catal. Today 82(1), 179 (2003).CrossRefGoogle Scholar
Hedlund, J., Schoeman, B., and Sterte, J.: Ultrathin oriented zeolite LTA films. Chem. Commun. (13), 1193 (1997).CrossRefGoogle Scholar
Sun, J., Zhu, G., Yin, X., Chen, Y., Cui, Y., and Qiu, S.: Preparation of an ordered zeolite MFI film by epitaxial growth. Chem. Commun. (8), 1070 (2005).CrossRefGoogle ScholarPubMed
Noack, M., Kölsch, P., Caro, J., Schneider, M., Toussaint, P., and Sieber, I.: MFI membranes of different Si/Al ratios for pervaporation and steam permeation. Microporous Mesoporous Mater. 35, 253 (2000).CrossRefGoogle Scholar
Kanezashi, M. and Lin, Y.: Gas permeation and diffusion characteristics of MFI-type zeolite membranes at high temperatures. J. Phys. Chem. C 113(9), 3767 (2009).CrossRefGoogle Scholar
Poshusta, J.C., Noble, R.D., and Falconer, J.L.: Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. J. Membr. Sci. 160(1), 115 (1999).CrossRefGoogle Scholar
Jareman, F., Andersson, C., and Hedlund, J.: The influence of the calcination rate on silicalite-1 membranes. Microporous Mesoporous Mater. 79(1), 1 (2005).CrossRefGoogle Scholar
Deng, Z., Nicolas, C-H., Daramola, M., Sublet, J., Schiestel, T., Burger, A., Guo, Y., Giroir-Fendler, A., and Pera-Titus, M.: Nanocomposite MFI-alumina hollow fibre membranes prepared via pore-plugging synthesis: Influence of the porous structure of hollow fibres on the gas/vapour separation performance. J. Membr. Sci. 364(1), 1 (2010).CrossRefGoogle Scholar
Li, S., Tuan, V.A., Falconer, J.L., and Noble, R.D.: Properties and separation performance of Ge-ZSM-5 membranes. Microporous Mesoporous Mater. 58(2), 137 (2003).CrossRefGoogle Scholar
Deng, Z., Nicolas, C-H., Guo, Y., Giroir-Fendler, A., and Pera-Titus, M.: Synthesis and characterization of nanocomposite B-MFI-alumina hollow fibre membranes and application to xylene isomer separation. Microporous Mesoporous Mater. 133(1), 18 (2010).CrossRefGoogle Scholar
O’Brien-Abraham, J. and Lin, Y.: Effect of isomorphous metal substitution in zeolite framework on pervaporation xylene-separation performance of MFI-type zeolite membranes. Ind. Eng. Chem. Res. 49(2), 809 (2009).CrossRefGoogle Scholar
Tuan, V.A., Li, S., Falconer, J.L., and Noble, R.D.: Separating organics from water by pervaporation with isomorphously-substituted MFI zeolite membranes. J. Membr. Sci. 196(1), 111 (2002).CrossRefGoogle Scholar
Shekhawat, D., Luebke, D.R., and Pennline, H.W.: A Review of Carbon Dioxide Selective Membranes. US Department of Energy: Morgantown, WV, 2003.CrossRefGoogle Scholar
Bowen, T.C., Noble, R.D., and Falconer, J.L.: Fundamentals and applications of pervaporation through zeolite membranes. J. Membr. Sci. 245(1), 1 (2004).CrossRefGoogle Scholar
Javaid, A.: Membranes for solubility-based gas separation applications. Chem. Eng. J. 112(1), 219 (2005).CrossRefGoogle Scholar
Bernal, M., Coronas, J., Menendez, M., and Santamaria, J.: Separation of CO2/N2 mixtures using MFI-type zeolite membranes. AIChE J. 50(1), 127 (2004).CrossRefGoogle Scholar
Bernal, M.A.P., Xomeritakis, G., and Tsapatsis, M.: Tubular MFI zeolite membranes made by secondary (seeded) growth. Catal. Today 67(1), 101 (2001).CrossRefGoogle Scholar
Tang, Z., Kim, S-J., Gu, X., and Dong, J.: Microwave synthesis of MFI-type zeolite membranes by seeded secondary growth without the use of organic structure directing agents. Microporous Mesoporous Mater. 118(1), 224 (2009).CrossRefGoogle Scholar
Sandström, L., Sjöberg, E., and Hedlund, J.: Very high flux MFI membrane for CO2 separation. J. Membr. Sci. 380(1), 232 (2011).CrossRefGoogle Scholar
Wang, Z. and Yan, Y.: Oriented zeolite MFI monolayer films on metal substrates by in situ crystallization. Microporous Mesoporous Mater. 48(1), 229 (2001).CrossRefGoogle Scholar
Lee, J.B., Funke, H.H., Noble, R.D., and Falconer, J.L.: High selectivities in defective MFI membranes. J. Membr. Sci. 321(2), 309 (2008).CrossRefGoogle Scholar
Alshebani, A., Pera-Titus, M., Landrivon, E., Schiestel, T., Miachon, S., and Dalmon, J-A.: Nanocomposite MFI-Ceramic hollow fibres: Prospects for CO2 separation. Microporous Mesoporous Mater. 115(1), 197 (2008).CrossRefGoogle Scholar
Nicolas, C.H. and Pera-Titus, M.: Nanocomposite MFI-alumina hollow fiber Membranes: Influence of NOx and Propane on CO2/N2 separation properties. Ind. Eng. Chem. Res. 51(31), 10451 (2012).CrossRefGoogle Scholar
Pera-Titus, M., Alshebani, A., Nicolas, C-H., Roumégoux, J-P., Miachon, S., and Dalmon, J-A.: Nanocomposite MFI-alumina membranes: High-flux hollow fibers for CO2 capture from internal combustion vehicles. Ind. Eng. Chem. Res. 48(20), 9215 (2009).CrossRefGoogle Scholar
Chen, H., Li, Y., and Yang, W.: Preparation of silicalite-1 membrane by solution-filling method and its alcohol extraction properties. J. Membr. Sci. 296(1), 122 (2007).CrossRefGoogle Scholar
Xu, X., Yang, W., Liu, J., Lin, L., Stroh, N., and Brunner, H.: Synthesis of NaA zeolite membrane on a ceramic hollow fiber. J. Membr. Sci. 229(1), 81 (2004).CrossRefGoogle Scholar
Xu, J., Khor, K., Sui, J., and Chen, W.: Preparation and characterization of a novel hydroxyapatite/carbon nanotubes composite and its interaction with osteoblast-like cells. Mater. Sci. Eng., C 29(1), 44 (2009).CrossRefGoogle Scholar