Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T07:03:57.606Z Has data issue: false hasContentIssue false

Fabrication of ultrafine fibrous polytetrafluoroethylene porous membranes by electrospinning

Published online by Cambridge University Press:  23 February 2011

Jie Xiong*
Affiliation:
Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
Pengfei Huo
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Frank K. Ko
Affiliation:
Advanced Fibrous Materials, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Poly(vinyl alcohol) (PVA) and poly(tetrafluoroethylene) (PTFE) emulsion were blended with different mass concentrations and the blended spinning solutions were electrospun into composite nanofibers. The influence of the blend ratio of PVA to PTFE and electrospinning technical parameters on the morphology and diameter of the composite nanofibers were investigated. According to the result of thermogravimetric analyzer analysis, the composite membrane was sintered at 390 °C. The membranes were then characterized by differential scanning calorimetry, attenuated total reflection-Fourier transform infrared (ATR-FTIR), and scanning electron microscopy, respectively. The mechanical properties of the membranes before and after sintering were analyzed through tensile testing. The results show that the PTFE porous membranes could be electrospun effectively, thus demonstrating their potential application as filter media.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Khanam, N., Mikoryak, C., Draper, R.K. and Balkus, K.J. Jr: Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomater. 3, 1050 (2007).CrossRefGoogle ScholarPubMed
2Jeong, L., Lee, K.Y. and Park, W.H.: Effect of solvent on the characteristics of electrospun regenerated silk fibroin nanofibers. Key Eng. Mater. 342–343, 813 (2007).CrossRefGoogle Scholar
3Yutaka, K., Atsushi, N. and Noriaki, M.: Structure for electro-spun silk fibroin nanofibers. J. Appl. Polym. Sci. 107, 3681 (2008).Google Scholar
4Diller, G.B., Cooper, J., Xie, Z.W., Wu, Y., Waldrup, J. and Ren, X.: Release of antibiotics from electrospun bicomponent fibers. Cellulose 14, 553 (2007).CrossRefGoogle Scholar
5Wu, L.L., Yuan, X.Y. and Sheng, J.: Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J. Membr. Sci. 250, 167 (2005).CrossRefGoogle Scholar
6Choi, S.S., Lee, Y.S., Joo, C.W., Lee, S.G., Park, J.K. and Han, K.S.: Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim. Acta 50, 339 (2004).CrossRefGoogle Scholar
7Dotti, F., Varesano, A., Montarsolo, A., Aluigi, A., Tonin, C. and Mazzuchetti, G.: Electrospun porous mats for high efficiency filtration. J. Ind. Text. 37, 151 (2007).CrossRefGoogle Scholar
8Ahn, Y.C., Park, S.K., Kim, G.T., Hwang, Y.J., Lee, C.G., Shin, H.S. and Lee, J.K.: Development of high efficiency nanofilters made of nanofibers. Curr. Appl. Phys. 6, 1030 (2006).CrossRefGoogle Scholar
9Park, H.S. and Park, Y.O.: Filtration properties of electrospun ultrafine fiber webs. Korean J. Chem. Eng. 22, 165 (2005).CrossRefGoogle Scholar
10Podgórski, A., Balazy, A. and Gradoń, L.: Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci. 61, 6804 (2006).CrossRefGoogle Scholar
11Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S. and Matsuura, T.: Electrospun nanofibrous filtration membrane. J. Membr. Sci. 281, 581 (2006).CrossRefGoogle Scholar
12Shin, C. and Chase, G.G.: Separation of liquid drops from air by glass fiber filters augmented with polystyrene nanofibers. J. Dispersion Sci. Technol. 27, 5 (2006).CrossRefGoogle Scholar
13Shin, C. and Chase, G.G.: Water-in-oil coalescence in micro-nanofiber composite filters. AIChE J. 50, 343 (2004).CrossRefGoogle Scholar
14Shin, C. and Chase, G.G.: Separation of water-in-oil emulsions using glass fiber media augmented with polymer nanofibers. J. Dispersion Sci. Technol. 27, 517 (2006).CrossRefGoogle Scholar
15Shin, C., Chase, G.G. and Reneker, D.H.: Recycled expanded polystyrene nanofibers applied in filter media. Colloids Surf., A 262, 211 (2005).CrossRefGoogle Scholar
16Shin, C., Chase, G.G. and Reneker, D.H.: The effect of nanofibers on liquid–liquid coalescence filter performance. AIChE J. 51, 3109 (2005).CrossRefGoogle Scholar
17Yoon, K., Kim, K., Wang, X., Fang, D., Hsiao, B.S. and Chu, B.: High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47, 2434 (2006).CrossRefGoogle Scholar
18Wang, X., Fang, D., Yoon, K., Hsiao, B.S. and Chu, B.: High performance ultrafiltration composite membranes based on poly (vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly (vinyl alcohol) scaffold. J. Membr. Sci. 278, 261 (2006).CrossRefGoogle Scholar
19Wang, X., Chen, X., Yoon, K., Fang, D., Hsiao, B.S. and Chu, B.: High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ. Sci. Technol. 39, 7684 (2005).CrossRefGoogle ScholarPubMed
20Shimizu, M.: Process of making PTFE fibers. U.S. Patent No. 5686033, November 11, 1997, p. 11.Google Scholar
21Brown, E.N. and Dattelbaum, D.M.: The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE). Polymer 46, 3056 (2005).CrossRefGoogle Scholar
22Ochoa, I. and Hatzikiriakos, S.G.: Paste extrusion of polytetrafluoroethylene (PTFE): Surface tension and viscosity effects. Powder Technol. 153, 108 (2005).CrossRefGoogle Scholar
23Patil, P.D., Ochoa, I., Feng, J.J. and Hatzikiriakos, S.G.: Viscoelastic flow simulation of polytetrafluoroethylene (PTFE) paste extrusion. J. Non-Newtonian Fluid Mech. 153, 25 (2008).CrossRefGoogle Scholar
24Goessi, M., Tervoort, T. and Smith, P.: Melt-spun poly(tetrafluoroethylene) fibers. J. Mater. Sci. 42, 7983 (2007).CrossRefGoogle Scholar
25Borkar, S., Gu, B., Dirmyer, M., Delicado, R., Sen, A., Jackson, B.R. and Badding, J.V.: Polytetrafluoroethylene nano/microfibers by jet blowing. Polymer 47, 8337 (2006).CrossRefGoogle Scholar
26Kurumada, K., Kitamura, T., Fukumoto, N., Oshima, M., Tanigaki, M. and Kanazawa, S.: Structure generation in PTFE porous membranes induced by the uniaxial and biaxial stretching operations. J. Membr. Sci. 149, 51 (1998).CrossRefGoogle Scholar
27Okamoto, N. and Moriyama, Y.: Production method of PTFE porous materials. Japan Patent No. S53-42794, November 14, 1978.Google Scholar
28Oga, S.: Production method of PTFE materials with porous structure. Japan Patent No. S42-13560, August 1, 1967.Google Scholar
29Gore, W.L.: Production method of stably sized PTFE plastic materials free from heat treatment. Japan Patent No. S52–26547, July 14, 1977.Google Scholar
30Huang, X.J., Ge, D. and Xu, Z.K.: Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur. Polym. J. 43, 3710 (2007).CrossRefGoogle Scholar
31Dai, X. and Shivkumar, S.: Electrospinning of hydroxyapatite fibrous mats. Mater. Lett. 61, 2735 (2007).CrossRefGoogle Scholar
32Ding, B., Ogawa, T., Kim, J., Fujimoto, K. and Shiratori, S.: Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning. Thin Solid Films 516, 2495 (2008).CrossRefGoogle Scholar
33Sukigara, S., Gandhi, M., Ayutsede, J., Micklus, M. and Ko, F.: Regeneration of Bombyx mori silk by electrospinning—Part 1: Processing parameters and geometric properties. Polymer 44, 5721 (2003).CrossRefGoogle Scholar
34Ahn, Y.C., Park, S.K., Kim, G.T., Hwang, Y.J., Lee, C.G., Shin, H.S. and Lee, J.K.: Development of high efficiency nanofilters made of nanofibers. Curr. Appl. Phys. 6, 1030 (2006).CrossRefGoogle Scholar
35Fong, H., Chun, I. and Reneker, D.H.: Beaded nanofibers formed during electrospinning. Polymer 40, 4585 (1999).CrossRefGoogle Scholar
36Lee, K.H., Kim, H.Y., Bang, H.J., Jung, Y.H. and Lee, S.G.: The change of bead morphology formed on electrospun polystyrene fibers. Polymer 44, 4029 (2003).CrossRefGoogle Scholar
37Lin, K., Chua, K.N., Christopherson, G.T., Lim, S. and Mao, H.Q.: Reducing electrospun nanofiber diameter and variability using cationic amphiphiles. Polymer 48, 6384 (2007).CrossRefGoogle Scholar
38Yan, R.X.: Water Soluble Polymer (Chemical Industry Press, Beijing, 1998), pp. 4269.Google Scholar
39Zheng, Y.D., Wang, Y.J., Chen, X.F., Liu, Q. and Wu, G.: Characterization and properties of poly(vinyl alcohol)/hydroxylapatite hydrogels prepared by compound in situ with sol-gel method. Chem. J. Chin. Univ. 26, 1735 (2005).Google Scholar
40Wang, C. and Chen, J.: Graft of acrylic acid onto polytetrafluoroethylene by Ar remote-plasma. J. Xi'an Jiaotong Univ. 40, 491 (2006).Google Scholar
41Dürrschmidt, T. and Hoffmann, H.: Film-forming process from globular polytetrafluoroethylene latex particles. J. Appl. Polym. Sci. 92, 733 (2004).CrossRefGoogle Scholar