Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T21:29:40.488Z Has data issue: false hasContentIssue false

Fabrication of two-dimensional disordered copper 1,3,5-tricarboxylate film by vapor–solid method

Published online by Cambridge University Press:  29 October 2012

Chunjiao Chen
Affiliation:
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
Yue Qi
Affiliation:
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
Zhengping Qiao*
Affiliation:
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Two-dimensional (2D) disordered copper 1,3,5-tricarboxylate film on copper foil was first reported in this paper. In the x-ray powder diffraction pattern of the as-prepared film, there were only two diffraction peaks exist in d value of 6.60 and 3.32 Å, which were correspond to the (400) and (800) diffractions of bulk HKUST-1, respectively. And the d value of 6.60 Å in bulk HKUST-1 is very close to the thickness of one-layered Cu2+ plus one-layered C9H3O63− (6.59 Å). The structure of as-prepared film was proved to be 2D disordered copper 1,3,5-tricarboxylate film. The periodical stacking of Cu2+ and C9H3O63−is perpendicular to the substrate. There is no periodic structure within the layer. Scanning electron microscopy, transmission electron microscope (TEM), high-resolution transmission electron microscope, infrared, Raman, and x-ray photoelectron spectrometer supported this result. This kind of disorder probably also existed in the reported HKUST-1 film that shows strong (400) diffraction in x-ray diffraction (XRD) pattern. This result probably explains why (400) diffraction in XRD pattern of reported synthesized HKUST-1 film is anomalously strong. This strategy is simple. No seed, no pretreated solvothermal mother liquors, and no specific functionalization are required.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kitagawa, S., Kitaura, R., and Noro, S.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43(18), 2334 (2004).CrossRefGoogle ScholarPubMed
O’Keeffe, M., Eddaoudi, M., Li, H.L., Reineke, T., and Yaghi, O.M.: Frameworks for extended solids: Geometrical design principles. J. Solid State Chem. 152(1), 3 (2000).CrossRefGoogle Scholar
Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., and Margiolaki, I.: A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040 (2005).CrossRefGoogle ScholarPubMed
Zhang, Y.B., Zhou, H.L., Lin, R.B., Zhang, C., Lin, J.B., Zhang, J.P., and Chen, X.M.: Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology. Nat. Commun. 3, 642 (2012).CrossRefGoogle ScholarPubMed
Alaerts, L., Kirschhock, C.E.A., Maes, M., van der Veen, M.A., Finsy, V., Depla, A., Martens, J.A., Baron, G.V., Jacobs, P.A., Denayer, J.F.M., and De Vos, D.E.: Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew. Chem. Int. Ed. 46, 4293 (2007).CrossRefGoogle ScholarPubMed
Lee, J.Y., Olson, D.H., Pan, L., Emge, T.J., and Li, J.: Microporous metal-organic frameworks with high gas sorption and separation capacity. Adv. Funct. Mater. 17, 1255 (2007).CrossRefGoogle Scholar
Zou, R-Q., Sakurai, H., Han, S., Zhong, R-Q., and Xu, Q.: Probing the Lewis acid sites and CO catalytic oxidation activity of the porous metal-organic polymer [Cu(5-methylisophthalate)]. J. Am. Chem. Soc. 129, 8402 (2007).CrossRefGoogle Scholar
Maji, T.K., Matsuda, R., and Kitagawa, S.: A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat. Mater. 6, 142 (2007).CrossRefGoogle ScholarPubMed
Chui, S.S.Y., Lo, S.M.F., Charmant, J.P.H., Orpen, A.G., and Williams, I.D.: A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148 (1999).CrossRefGoogle Scholar
Guo, H.L., Zhu, G.S., Hewitt, I.J., and Qiu, S.L.: “Twin copper source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc. 131, 1646 (2009).CrossRefGoogle Scholar
Wang, Q.M., Shen, D.M., Bülow, M., Lau, M.L., Deng, S.G., Fitch, F.R., Lemcoff, N.O., and Semanscin, J.: Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater. 55, 217 (2002).CrossRefGoogle Scholar
Skoulidas, A.I.: Molecular dynamics simulations of gas diffusion in metal-organic frameworks: Argon in CuBTC. J. Am. Chem. Soc. 126, 1356 (2004).CrossRefGoogle ScholarPubMed
Yang, Q.Y., Xue, C.Y., Zhong, C.L., and Chen, J.F.: Molecular simulation of separation of CO2 from flue gases in Cu-BTC metal-organic framework. AIChE J. 53, 2832 (2007).CrossRefGoogle Scholar
Keskin, S., Liu, J.C., Johnson, J.K., and Sholl, D.S.: Atomically detailed models of gas mixture diffusion through CuBTC membranes. Microporous Mesoporous Mater. 125, 101 (2009).CrossRefGoogle Scholar
Szelagowska-Kunstman, K., Cyganik, P., Goryl, M., Zacher, D., Puterova, Z., Fischer, R.A., and Szymonski, M.: Surface structure of metal-organic framework grown on self-assembled monolayers revealed by high-resolution atomic force microscopy. J. Am. Chem. Soc. 130, 14446 (2008).CrossRefGoogle ScholarPubMed
Allendorf, M.D., Houk, R.J.T., Andruszkiewicz, L., Talin, A.A., Pikarsky, J., Choudhury, A., Gall, K.A., and Hesketh, P.J.: Stress-induced chemical detection using flexible metal-organic frameworks. J. Am. Chem. Soc. 130, 14404 (2008).CrossRefGoogle ScholarPubMed
Biemmi, E., Scherb, C., and Bein, T.: Oriented growth of the metal organic framework Cu3(BTC)2(H2O)3·xH2O tunable with functionalized self-assembled monolayers. J. Am. Chem. Soc. 129, 8054 (2007).CrossRefGoogle Scholar
Schoedel, A., Scherb, C., and Bein, T.: Oriented nanoscale films of metal-organic frameworks by room-temperature gel-layer synthesis. Angew. Chem. Int. Ed. 49, 7225 (2010).CrossRefGoogle ScholarPubMed
Biemmi, E., Darga, A., Stock, N., and Bein, T.: Direct growth of Cu3(BTC)2(H2O)3·xH2O thin films on modified QCM-gold electrodes water sorption isotherms. Microporous Mesoporous Mater. 114, 380 (2008).CrossRefGoogle Scholar
Guerrero, V.V., Yoo, Y., McCarthy, M.C., and Jeong, H-K.: HKUST-1 membranes on porous supports using secondary growth. J. Mater. Chem. 20, 3938 (2010).CrossRefGoogle Scholar
Ameloot, R., Gobechiya, E., Uji-i, H., Martens, J.A., Hofkens, J., Alaerts, L., Sels, B.F., and De Vos, D.E.: Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions. Adv. Mater. 22, 2685 (2010).CrossRefGoogle ScholarPubMed
Ameloot, R., Pandey, L., Auweraer, M.V., Alaerts, L., Sels, B.F., and De Vos, D.E.: Patterned film growth of metal–organic frameworks based on galvanic displacement. Chem. Commun. 46, 3735 (2010).CrossRefGoogle ScholarPubMed
Ameloot, R., Stappers, L., Fransaer, J., Alaerts, L., Sels, B.F., and De Vos, D.E.: Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 21, 2580 (2009).CrossRefGoogle Scholar
Gascon, J., Aguado, S., and Kapteijn, F.: Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous Mesoporous Mater. 113, 132 (2008).CrossRefGoogle Scholar
Zhuang, J-L., Ceglarek, D., Pethuraj, S., and Terfort, A.: Rapid room-temperature synthesis of metal-organic framework HKUST-1 crystals in bulk and as oriented and patterned thin films. Adv. Funct. Mater. 21, 1442 (2011).CrossRefGoogle Scholar
Shekhah, O., Liu, J., Fischerb, R.A., and Wöll, C.: MOF thin films: Existing and future applications. Chem. Soc. Rev. 40, 1081 (2011).CrossRefGoogle ScholarPubMed
Li, Z-Q., Qiu, L-G., Xu, T., Wu, Y., Wang, W., Wu, Z-Y., and Jiang, X.: Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 63, 78 (2009).CrossRefGoogle Scholar
Shekhah, O., Wang, H., Kowarik, S., Schreiber, F., Paulus, M., Tolan, M., Sternemann, C., Evers, F., Zacher, D., Fischer, R.A., and Wöll, C.: Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 129, 15118 (2007).CrossRefGoogle ScholarPubMed
Zacher, D., Shekhah, O., Wöll, C., and Fischer, R.A.: Thin films of metal-organic frameworks. Chem. Soc. Rev. 38, 1418 (2009).CrossRefGoogle ScholarPubMed
Zacher, D., Liu, J., Huber, K., and Fischer, R.A.: Nanocrystals of [Cu3(btc)2](HKUST-1): A combined time-resolved light scattering and scanning electron microscopy study. Chem. Commun. 45, 1031 (2009).CrossRefGoogle Scholar
Nan, J.P., Dong, X.L., Wang, W.J., Jin, W.Q., and Xu, N.P.: Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support. Langmuir 27, 4309 (2011).CrossRefGoogle ScholarPubMed
Zhang, W.X., Wen, X.G., Yang, S.H., Berta, Y., and Wang, Z.L.: Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv. Mater. 15, 822 (2003).CrossRefGoogle Scholar
Wen, X.G., Wang, S.H., Xie, Y.T., Li, X-Y., and Yang, S.H.: Low-temperature synthesis of single crystalline Ag2S nanowires on silver substrates. J. Phys. Chem. B 109, 10100 (2005).CrossRefGoogle ScholarPubMed
JCPDF Card No. 50–0663.Google Scholar
Prestipino, C., Regli, L., Vitillo, J.G., Bonino, F., Damin, A., Lamberti, C., Zecchina, A., Solari, P.L., Kongshaug, K.O., and Bordiga, S.: Local structure of framework Cu(II) in HKUST-1 metal-organic framework: Spectroscopic characterization upon activation and interaction with adsorbates. Chem. Mater. 18, 1337 (2006).CrossRefGoogle Scholar
Ghijsen, J., Tjeng, L.H., Elp, J.V., Eskes, H., Westerink, J., and Sawatzky, G.A.: Electronic structure of Cu2O and CuO. Phys. Rev. B 38, 11322 (1988).CrossRefGoogle ScholarPubMed
Chawla, S.K., Sankarraman, N., and Payer, J.H.: Diagnostic spectra for XPS analysis of Cu-O-S-H compounds. J. Electron. Spectrosc. Relat. Phenom. 61, 1 (1992).CrossRefGoogle Scholar
Zhang, W.X. and Yang, S.H.: In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates. Acc. Chem. Res. 42(10), 1617 (2009).CrossRefGoogle ScholarPubMed
Supplementary material: File

Chen Supplementary Material

Appendix

Download Chen Supplementary Material(File)
File 554.5 KB