Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T07:08:39.924Z Has data issue: false hasContentIssue false

Fabrication of large-size Fe-based glassy cores with good soft magnetic properties by spark plasma sintering

Published online by Cambridge University Press:  31 January 2011

Baolong Shen
Affiliation:
Research and Development Project, Core Research for Evolution Science and Technology (CREST), Japan Science and Technology Corporation, Sendai 980–8577, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
Get access

Abstract

Glassy Fe65Co10Ga5P12C4B4 alloy powders with a large supercooled liquid region of 50 K before crystallization were synthesized in the particle size range below 125 μm by Ar gas atomization. With the aim of developing a large-size Fe-based glassy core with good soft magnetic properties, the consolidation method of spark plasma sintering was applied to the Fe65Co10Ga5P12C4B4 glassy powders. The existence of the supercooled liquid region enabled us to form a large-size glassy alloy disc 20 mm in diameter and 5 mm in thickness with a high relative density of 99.7% at the glass-transition temperature of 723 K and under the external applied pressure of 300 MPa. The resulting glassy core of 18 mm in outer diameter, 10 mm in inner diameter, and 4 mm in thickness exhibits good soft magnetic properties: 1.20 T for saturation magnetization, 6 A/m for coercive force, and 8900 for maximum permeability. The good soft magnetic properties of the Fe-based bulk glassy core are attributed to the combination of the high relative density and the maintenance of the single glassy structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Egami, T., Flanders, P.J., and Graham, C.D., Jr., Appl. Phys. Lett. 26, 128 (1975).CrossRefGoogle Scholar
2.Fujimori, H., Masumoto, T., Obi, Y., and Kikuchi, M., Jpn. J. Appl. Phys. 13, 1889 (1974).CrossRefGoogle Scholar
3.Sherwood, R.C., Gyorgy, E.M., Chen, H.S., Ferris, S.D., Noman, G., and Leamy, H.J., AIP Conf. Proc. 24, 745 (1975).CrossRefGoogle Scholar
4.Chen, H.S., Rep. Prog. Phys. 43, 353 (1980).CrossRefGoogle Scholar
5.Cahn, R.W., in Rapidly Solidified Alloys, edited by Liebermann, H.H. (Marcel Dekker, New York, 1993).Google Scholar
6.Hasegawa, R., Hathaway, R.H., and Chang, C.F., J. Appl. Phys. 57, 3566 (1985).CrossRefGoogle Scholar
7.Minakawa, S. and Masumoto, T., IEEE Trans. Magn. MAG-23, 3245 (1987).CrossRefGoogle Scholar
8.Endo, I., Otuka, I., Okubo, R., Shintani, A., Yoshino, M., and Yagi, M., IEEE Trans. Magn. 35, 3385 (1999).CrossRefGoogle Scholar
9.Cline, C.F. and Hooper, R.W., Scripta Metall. 11, 1137 (1977).CrossRefGoogle Scholar
10.Murr, L.E., Shanker, S., Hare, A.W., and Staudhammer, K.P., Scripta Matall. 17, 1353 (1983).CrossRefGoogle Scholar
11.Morris, D.G., Rapidly Quenched Metals 2, 1751 (1984).Google Scholar
12.Inoue, A. and Gook, J.S., Mater. Trans. JIM 36, 1180 (1995).CrossRefGoogle Scholar
13.Inoue, A., Shinohara, Y., and Gook, G.S., Mater. Trans. JIM 36, 1427 (1995).CrossRefGoogle Scholar
14.Shen, B.L., Koshiba, H., Mizushima, T., and Inoue, A., Mater. Trans. JIM 41, 873 (2000).CrossRefGoogle Scholar
15.Shen, T.D. and Schwarz, R.B., Appl. Phys. Lett. 75, 49 (1999).CrossRefGoogle Scholar
16.Shen, B.L., Koshiba, H., Kimura, H., and Inoue, A., Mater. Trans. JIM 41, 1478 (2000).CrossRefGoogle Scholar
17.Shen, B.L., Kimura, H.M., Inoue, A., and Mizushima, T., Mater. Trans. JIM 41, 1675 (2000).CrossRefGoogle Scholar
18.Inoue, A., Zhang, T., Itio, T., and Takeuchi, A., Mater. Trans. JIM 38, 359 (1997).CrossRefGoogle Scholar
19.Inoue, A. and Shen, B.L., Mater. Trans. 43, 766 (2002).CrossRefGoogle Scholar
20.Inoue, A. and Shen, B.L., Mater. Trans. 43, 2350 (2002).CrossRefGoogle Scholar
21.Shen, B.L. and Inoue, A., Mater. Trans. 43, 1235 (2002).CrossRefGoogle Scholar
22.Shen, B.L., Koshiba, H., Inoue, A., Kimura, H.M., and Mizushima, T., Mater. Trans. 42, 2136 (2001).CrossRefGoogle Scholar
23.Inoue, A. and Shen, B.L., Mater. Trans. 43, 1230 (2002).CrossRefGoogle Scholar
24.Kawamura, Y., Kato, H., Inoue, A., and Masumoto, T., Int. J. Powder Metall. 33, 50 (1997).Google Scholar
25.Mamedov, V., Powder Metall. 45, 322 (2002).CrossRefGoogle Scholar
26.Kawamura, Y., Inoue, A., and Masumoto, T., Scripta Metall. 29, 25 (1993).CrossRefGoogle Scholar
27.Schlorke, N., Eckert, J., and Schultz, L., J. Phys. D: Appl. Phys. 32, 855 (1999).CrossRefGoogle Scholar
28.Eckert, J., Mattern, N., Zinkevitch, M., and Seidel, M., Mater. Trans. JIM 39, 623 (1998).CrossRefGoogle Scholar
29.Yoshida, S., Mizushima, T., Makino, A., and Inoue, A., J. Japan Inst. Matals 63, 1097 (1999).Google Scholar
30.Stoica, M., Degmova, J., Roth, S., Eckert, J., Grahl, H., Schultz, L., Yavari, A.R., Kvick, A., and Heunen, G., Mater. Trans. 43, 1966 (2002).CrossRefGoogle Scholar