Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T16:41:10.671Z Has data issue: false hasContentIssue false

Fabrication of Cu–Zr–Ag–Al glassy alloy samples with a diameter of 20 mm by water quenching

Published online by Cambridge University Press:  31 January 2011

Wei Zhang
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Qingsheng Zhang*
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The melting behavior, thermal stability, and glass-forming ability (GFA) of Cu84−xZrxAg8Al8 (x = 42 to 50) glassy alloys were investigated. The alloy with x = 46 exhibits the highest reduced glass transition temperature (Trg). However, the best GFA was obtained for alloy with x = 48 corresponding to the largest supercooled liquid region (ΔTx) and a deep eutectic composition. At the best GFA composition, full glassy samples with diameters of over 20 mm could be fabricated by injection copper mold casting and water quenching without flux. The underlying mechanism of the unusual GFA of the alloy is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A., Kita, K., Zhang, T.Masumoto, T.: An amorphous La55Al25Ni20 alloy prepared by water quenching. Mater. Trans., JIM 30, 722 1989CrossRefGoogle Scholar
2Inoue, A., Kato, A., Zhang, T., Kim, S.G.Masumoto, T.: Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans., JIM 32, 609 1991CrossRefGoogle Scholar
3Zhang, T., Inoue, A.Masumoto, T.: Amorphous Zr–Al–TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans., JIM 32, 1005 1991CrossRefGoogle Scholar
4Peker, A.Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 1993CrossRefGoogle Scholar
5Inoue, A.Gook, S.G.: Fe-based ferromagnetic glassy alloys with wide supercooled liquid region. Mater. Trans., JIM 36, 1180 1995CrossRefGoogle Scholar
6Lin, X.H.Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 1995CrossRefGoogle Scholar
7Inoue, A., Nishiyama, N.Kimura, H.: Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. Trans., JIM 38, 179 1997CrossRefGoogle Scholar
8Zhang, T.Inoue, A.: Thermal and mechanical properties of Ti–Ni–Cu–Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater. Trans., JIM 39, 1001 1998CrossRefGoogle Scholar
9Itoi, T.Inoue, A.: Thermal stability and soft magnetic properties of Co–Fe–M–B (M = Nb, Zr) amorphous alloys with large supercooled liquid region. Mater. Trans., JIM 41, 1256 2000CrossRefGoogle Scholar
10Wang, X., Yoshii, I., Inoue, A., Kim, Y.H.Kim, I.B.: Bulk amorphous Ni75−xNb5MxP20−yBy (M = Cr, Mo) alloys with large supercooling and high strength. Mater. Trans., JIM 40, 1130 1999CrossRefGoogle Scholar
11Yi, S., Park, T.G.Kim, D.H.: Ni-based bulk amorphous alloys in the Ni–Ti–Zr–(Si,Sn) system. J. Mater. Res. 15, 2425 2000CrossRefGoogle Scholar
12Zhang, T.Inoue, A.: New bulk glassy Ni-based alloys with high strength of 3000 MPa. Mater. Trans. 43, 708 2002CrossRefGoogle Scholar
13Gu, X., Xing, L.Hufnagel, T.C.: Glass-forming ability and crystallization of bulk metallic glass (HfxZr1−x)52.5Cu17.9Ni14.6Al10Ti5. J. Non-Cryst. Solids 311, 72 2002CrossRefGoogle Scholar
14Inoue, A., Zhang, W., Zhang, T.Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 2001CrossRefGoogle Scholar
15Inoue, A.Zhang, W.: Formation, thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater. Trans. 43, 2921 2002CrossRefGoogle Scholar
16Zhang, W.Inoue, A.: High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu–Zr–Ag ternary system. J. Mater. Res. 21, 234 2006CrossRefGoogle Scholar
17Amiya, K.Inoue, A.: Formation, thermal stability and mechanical properties of Ca-based bulk glassy alloys. Mater. Trans. 43, 81 2002CrossRefGoogle Scholar
18Schroers, J.Johnson, W.L.: Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system. Appl. Phys. Lett. 84, 3666 2004CrossRefGoogle Scholar
19Schroers, J., Lohwongwatana, B., Johnson, W.L.Peker, A.: Gold based bulk metallic glass. Appl. Phys. Lett. 87, 061912 2005CrossRefGoogle Scholar
20Inoue, A.Zhang, T.: Fabrication of bulk Glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater. Trans., JIM 37, 185 1996CrossRefGoogle Scholar
21Johnson, W.L.: Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Mater. Sci. Forum 225–227, 35 1996CrossRefGoogle Scholar
22Yokoyama, Y., Mund, E., Inoue, A.Schultz, L.: Production of Zr55Cu30Ni5Al10 glassy alloy rod of 30 mm in diameter by a cap-cast technique. Mater. Trans. 48, 3190 2007CrossRefGoogle Scholar
23Ma, H., Shi, L.L., Xu, J., Li, Y.Ma, E.: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 2005CrossRefGoogle Scholar
24Guo, F., Poon, S.J.Shiflet, G.J.: Metallic glass ingots based on yttrium. Appl. Phys. Lett. 83, 2575 2003CrossRefGoogle Scholar
25Jiang, Q.K., Zhang, G.Q., Chen, L.Y., Wu, J.Z., Zhang, H.G.Jiang, J.Z.: Glass formability, thermal stability and mechanical properties of La-based bulk metallic glasses. J. Alloy Compd. 424, 183 2006CrossRefGoogle Scholar
26Li, R., Pang, S.J., Ma, C.L.Zhang, T.: Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses. Acta Mater. 55, 3719 2007CrossRefGoogle Scholar
27Turnbull, D.: Under what conditions can a glass be formed. Contemp. Phys. 10, 473 1969CrossRefGoogle Scholar
28Lu, Z.P.Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 2002CrossRefGoogle Scholar
29Tan, H., Zhang, Y., Ma, D., Feng, Y.P.Li, Y.: Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La–Al–(Cu,Ni) pseudo ternary system. Acta Mater. 51, 4551 2003CrossRefGoogle Scholar
30Zhang, Y., Tan, H., Kong, H.Z., Yao, B.Li, Y.: Glass-forming ability of Pr–(Cu,Ni)–Al alloys in eutectic system. J. Mater. Res. 18, 664 2003CrossRefGoogle Scholar
31Zhang, Q.S., Zhang, W.Inoue, A.: New Cu–Zr-based bulk metallic glasses with large diameters of up to 1.5 cm. Scripta Mater. 55, 711 2006CrossRefGoogle Scholar
32Xu, D.H., Duan, G.Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rew. Lett. 92, 245504 2004CrossRefGoogle ScholarPubMed
33Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
34Qin, C.L., Zhang, W., Zhang, Q.S., Asam, K.Inoue, A.: Chemical characteristics of the passive surface films formed on newly developed Cu–Zr–Ag–Al bulk metallic glasses. J. Mater. Res. (in press)Google Scholar