Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-31T18:33:29.892Z Has data issue: false hasContentIssue false

Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites

Published online by Cambridge University Press:  31 January 2011

Qunfeng Cheng
Affiliation:
Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People’s Republic of China
Jiaping Wang*
Affiliation:
Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People’s Republic of China
Kaili Jiang
Affiliation:
Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People’s Republic of China
Qunqing Li
Affiliation:
Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People’s Republic of China
Shoushan Fan
Affiliation:
Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A method to fabricate continuous and aligned multiwalled carbon nanotube (CNT)/epoxy composites is presented in this paper. CNT/epoxy composites were made by infiltrating an epoxy resin into a stack of continuous and aligned multiwalled CNT sheets that were drawn from super-aligned CNT arrays. By controlling the amount and alignment of the continuous multiwalled CNT sheets, a CNT/epoxy composite with high content of well-dispersed CNTs can be obtained. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results show that the thermal stability of these CNT/epoxy composites was not affected by the addition of CNTs. The mechanical properties and electrical properties of the CNT/epoxy composites were dramatically improved compared to pure epoxy, suggesting that the CNT/epoxy composites can serve as multifunctional materials with combined mechanical and physical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212 1994CrossRefGoogle Scholar
2Bacon, R.: Growth, structure, and properties of graphite whiskers. J. Appl. Phys. 31, 283 1960CrossRefGoogle Scholar
3Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 2000CrossRefGoogle ScholarPubMed
4Huang, H., Liu, C.H., Wu, Y., Fan, S.S.: Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17, 1652 2005CrossRefGoogle Scholar
5Thostenson, E.T., Chou, T.W.: On the elastic properties of carbon nanotube-based composites: Modelling and characterization. J. Phys. D: Appl. Phys. 36, 573 2003CrossRefGoogle Scholar
6Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73, 3842 1998CrossRefGoogle Scholar
7Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194 2006CrossRefGoogle Scholar
8Breton, Y., Desarmot, G., Salvetat, J.P., Delpeux, S., Sinturel, C., Beguin, F., Bonnamy, S.: Mechanical properties of multiwall carbon nanotubes/epoxy composites: Influence of network morphology. Carbon 42, 1027 2004CrossRefGoogle Scholar
9Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., Schulte, K.: Carbon nanotube-reinforced epoxy-compo sites: Enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64, 2363 2004CrossRefGoogle Scholar
10Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—A comparative study. Compos. Sci. Technol. 65, 2300 2005CrossRefGoogle Scholar
11Zhu, J., Peng, H.Q., Rodriguez-Macias, F., Margrave, J.L., Khabashesku, V.N., Imam, A.M., Lozano, K., Barrera, E.V.: Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv. Funct. Mater. 14, 643 2004CrossRefGoogle Scholar
12Sandler, J., Shaffer, M.S.P., Prasse, T., Bauhofer, W., Schulte, K., Windle, A.H.: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polym. 40, 5967 1999CrossRefGoogle Scholar
13Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., Yodh, A.G.: High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269 2003CrossRefGoogle Scholar
14Wang, Z., Liang, Z.Y., Wang, B., Zhang, C., Kramer, L.: Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Composites Part A 35, 1225 2004CrossRefGoogle Scholar
15Chen, J., Hamon, M.A., Hu, H., Chen, Y.S., Rao, A.M., Eklund, P.C., Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science 282, 95 1998CrossRefGoogle ScholarPubMed
16Mickelson, E.T., Huffman, C.B., Rinzler, A.G., Smalley, R.E., Hauge, R.H., Margrave, J.L.: Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett. 296, 188 1998CrossRefGoogle Scholar
17Garg, A., Sinnott, S.B.: Effect of chemical functionalization on the mechanical properties of carbon nanotubes. Chem. Phys. Lett. 295, 273 1998CrossRefGoogle Scholar
18Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., Rodriguez-Macias, F.J., Boul, P.J., Lu, A.H., Heymann, D., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., Smalley, R.E.: Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys. A 67, 29 1998CrossRefGoogle Scholar
19Jiang, K.L., Li, Q.Q., Fan, S.S.: Nanotechnology: Spinning continuous carbon nanotube yarns—Carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature 419, 801 2002CrossRefGoogle Scholar
20Liu, K., Sun, Y.H., Chen, L., Feng, C., Feng, X.F., Jiang, K.L., Zhao, Y.G., Fan, S.S.: Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 8, 700 2008CrossRefGoogle ScholarPubMed
21Zhang, X.B., Jiang, K.L., Teng, C., Liu, P., Zhang, L., Kong, J., Zhang, T.H., Li, Q.Q., Fan, S.S.: Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 18, 1505 2006CrossRefGoogle Scholar
22Wei, L., Xu, Y.H., Yi, X.S., An, X.F.: Preliminary study on resin-transfer molding of highly-toughened graphite laminates by ex-situ method. J. Mater. Sci. 39, 2263 2004CrossRefGoogle Scholar
23Hull, D., Clyne, T.W.: An Introduction to Composite Materials Cambridge University Press Cambridge, UK 1981Google Scholar
24Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Kinloch, I.A., Bauhofer, W., Windle, A.H., Schulte, K.: Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polym. 47, 2036 2006CrossRefGoogle Scholar
25Moisala, A., Li, Q., Kinloch, I.A., Windle, A.H.: Thermal and electrical conductivity of single- and multiwalled carbon nanotube-epoxy composites. Compos. Sci. Technol. 66, 1285 2006CrossRefGoogle Scholar
26Allaoui, A., Bai, S., Cheng, H.M., Bai, J.B.: Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62, 1993 2002CrossRefGoogle Scholar