Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T07:17:22.197Z Has data issue: false hasContentIssue false

Fabrication and characterization of YSZ/Al2O3 nano-composite coatings on Inconel by electrophoretic deposition

Published online by Cambridge University Press:  10 July 2017

Omid Khanali*
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Imam Khomeini International University (IKIU), Qazvin 4149-16818, Iran
Saeid Baghshahi
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Imam Khomeini International University (IKIU), Qazvin 4149-16818, Iran
Masoud Rajabi
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Imam Khomeini International University (IKIU), Qazvin 4149-16818, Iran
*
a) Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

Nano-structured yttria stabilized zirconia (YSZ)/Al2O3 nano-composite coatings were prepared by electrophoretic deposition (EPD) in acetyl-acetone/ethanol solvents under the constant voltage of 40 V. High sintering temperature may damage the metal parts and also lead to high production costs. To overcome the disadvantages of high sintering temperatures, reaction bonding of Al was taken as the approach. It was found that a powder mixture of Al and YSZ can lower the sintering temperature. YSZ/Al green composites were deposited on the MCrAlY layer applied on Inconel alloy cathode. Iodine was added to the solutions as the stabilizing agent. According to differential thermal analysis (DTA) results, embedded Al particles oxidation started at 660 °C. Sintering process for YSZ/Al2O3 nano-composite coating occurred at 1150 °C for 4 h. A lower pinholes coating with the highest density due to the constraint of the substrate was obtained.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Nahum Travitzky

References

REFERENCES

Sadowski, T. and Golewski, P.: Loadings in Thermal Barrier Coatings of Jet Engine Turbine Blades: An Experimental Research and Numerical Modeling (Springer, Singapore, 2016).Google Scholar
Ghosh, S.: Thermal barrier ceramic coatings—A review. In Advanced Ceramic Processing, Mohamed, Adel, ed. (InTechOpen, Rijeka, Croatia, 2015), doi: 10.5772/61346.CrossRefGoogle Scholar
Padture, N.P., Gell, M., and Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280284 (2002).Google Scholar
Evans, A.G., Mumm, D., Hutchinson, J., Meier, G., and Pettit, F.: Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 46, 505553 (2001).Google Scholar
Cao, X., Vassen, R., and Stoever, D.: Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24, 110 (2004).CrossRefGoogle Scholar
Besra, L. and Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 161 (2007).Google Scholar
Zhang, D., Zhao, Z., Wang, B., Li, S., and Zhang, J.: Investigation of a new type of composite ceramics for thermal barrier coatings. Mater. Des. 112, 2733 (2016).CrossRefGoogle Scholar
Bao, G. and Cai, H.: Delamination cracking in functionally graded coating/metal substrate systems. Acta Mater. 45, 10551066 (1997).CrossRefGoogle Scholar
Bruce, R.W., Schaeffer, J.C., Rosenzweig, M.A., Viguie, R., Rigney, D.V., Maricocchi, A.F., Wortman, D.J., and Nagaraj, B.A. (General Electric Company): Thermal barrier coating resistant to erosion and impact by particulate matter. US Patent 5,683,825 (1997).Google Scholar
Demaray, R.E.: Adherent ceramic coatings. US Patent 4,676,994 (1987).Google Scholar
Richer, P.: Development of conventional and nanocrystalline bond coats by cold gas dynamic spraying for aerospace thermal barrier coatings. Ph.D. dissertation, University of Ottawa, Canada, (2010).Google Scholar
Yoshiba, M., Abe, K., Aranami, T., and Harada, Y.: High-temperature oxidation and hot corrosion behavior of two kinds of thermal barrier coating systems for advanced gas turbines. J. Therm. Spray Technol. 5, 259268 (1996).Google Scholar
Wiederhorn, S., Fields, R., Low, S., Bahng, G-W., Wehrstedt, A., Hahn, J., Tomota, Y., Miyata, T., Lin, H., Freeman, B., and Aihara, S.: Mechanical properties. In Springer Handbook of Materials Measurement Methods (Springer, Heidelberg, Germany, 2006); pp. 283397.Google Scholar
Lu, X-J. and Xiao, P.: Constrained sintering of YSZ/Al2O3 composite coatings on metal substrates produced from eletrophoretic deposition. J. Eur. Ceram. Soc. 27, 26132621 (2007).Google Scholar
Keyvani, A.: Microstructural stability oxidation and hot corrosion resistance of nanostructured Al2O3/YSZ composite compared to conventional YSZ TBC coatings. J. Alloys Compd. 623, 229237 (2015).Google Scholar
Kaya, C., Kaya, F., Atiq, S., and Boccaccini, A.: Electrophoretic deposition of ceramic coatings on ceramic composite substrates. Br. Ceram. Trans. 102, 99102 (2003).Google Scholar
Strangman, T.E. and Solfest, P.A.: Ceramic thermal barrier coating with alumina interlayer. US Patent 4,880,614 (1989).Google Scholar
Li, C., Wang, W., Tan, S., and Song, S.: Bond strength and oxidation resistance of YSZ/(Ni, Al) composite coatings. Surf. Eng. 30, 619623 (2014).CrossRefGoogle Scholar
Kalinina, E., Efimov, A., and Safronov, A.: Preparation of YSZ/Al2O3 composite coatings via electrophoretic deposition of nanopowders. Inorg. Mater. 52, 13011306 (2016).CrossRefGoogle Scholar
Vaßen, R., Jarligo, M.O., Steinke, T., Mack, D.E., and Stöver, D.: Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 205, 938942 (2010).Google Scholar
Wang, Z., Shemilt, J., and Xiao, P.: Fabrication of ceramic composite coatings using electrophoretic deposition, reaction bonding and low temperature sintering. J. Eur. Ceram. Soc. 22, 183189 (2002).Google Scholar
Sergo, V., Wang, X.L., Clarke, D.R., and Becher, P.F.: Residual stresses in alumina/ceria-stabilized zirconia composites. J. Am. Ceram. Soc. 78, 22132214 (1995).CrossRefGoogle Scholar
Belmonte, M., Julian, J.G., Miranzo, P., and Osendi, M.: Spark Plasma Sintering Mechanisms in Si3N4 Based Materials. In Innovative Processing and Manufacturing of Advanced Ceramics and Composites, Munir, Z.A., Ohji, T., and Hotta, Y., eds. (The American Ceramic Society, Cleveland, Ohio, 2010), pp. 6369.Google Scholar
Amrollahi, P., Krasinski, J.S., Vaidyanathan, R., Tayebi, L., and Vashaee, D.: Electrophoretic deposition (EPD): Fundamentals and applications from nano-to microscale structures. In Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques, Aliofkhazraei, M. and Hamdy, A.S., eds. (Springer-Verlag, Heidelberg, Germany, 2016), pp. 561591.CrossRefGoogle Scholar
Khanali, O., Ariaee, S., Rajabi, M., and Baghshahi, S.: An investigation on the properties of YSZ/Al2O3 nanocomposite coatings on Inconel by electrophoretic deposition. J. Compos. Mater., 0021998317702438 (2017).Google Scholar
Wang, X., Xiao, P., Schmidt, M., and Li, L.: Laser processing of yttria stabilised zirconia/alumina coatings on Fecralloy substrates. Surf. Coat. Technol. 187, 370376 (2004).Google Scholar
Cihlar, J., Drdlik, D., Cihlarova, Z., and Hadraba, H.: Effect of acids and bases on electrophoretic deposition of alumina and zirconia particles in 2-propanol. J. Eur. Ceram. Soc. 33, 18851892 (2013).Google Scholar
Ananth, K.P., Nathanael, A.J., Jose, S.P., Oh, T.H., Mangalaraj, D., and Ballamurugan, A.: Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties. Appl. Surf. Sci. 353, 189199 (2015).CrossRefGoogle Scholar
Baufeld, B., Van der Biest, O., and Rätzer-Scheibe, H-J.: Lowering the sintering temperature for EPD coatings by applying reaction bonding. J. Eur. Ceram. Soc. 28, 17931799 (2008).Google Scholar
Karimi, E., Khalil-Allafi, J., and Khalili, V.: Electrophoretic deposition of double-layer HA/Al composite coating on NiTi. Mater. Sci. Eng., C 58, 882890 (2016).CrossRefGoogle ScholarPubMed
Bai, M., Guo, F., and Xiao, P.: Fabrication of thick YSZ thermal barrier coatings using electrophoretic deposition. Ceram. Int. 40, 1661116616 (2014).Google Scholar
Yuan, Y., Wang, X., and Xiao, P.: Attrition milling of metallic-ceramic particles in acetyl-acetone. J. Eur. Ceram. Soc. 24, 22332240 (2004).Google Scholar
Guo, F., Javed, A., and Xiao, P.: Microstructure, oxidation behaviour and mechanical properties of Fe2O3 doped yttria-partially-stabilized zirconia coatings produced on metallic substrates by electrophoretic deposition. Surf. Coat. Technol. 264, 1722 (2015).Google Scholar
Thosin, K.A.Z.: A crack-free YSZ/AL2O3 composite film coating onto the AISI-316L steel substrate. Mater. Sci. Technol. 26, 167172 (2010).Google Scholar
Das, D. and Basu, R.N.: Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates. Mater. Res. Bull. 48, 32543261 (2013).CrossRefGoogle Scholar
Das, D., Islam, Q.A., and Basu, R.N.: Electrophoretic deposition kinetics and characterization of Ni–La1.95Ca0.05Zr2O7−δ particulate thin films. J. Am. Ceram. Soc. 99, 29372946 (2016).CrossRefGoogle Scholar
Kalinina, E., Efimov, A., and Safronov, A.: The influence of nanoparticle aggregation on formation of ZrO2 electrolyte thin films by electrophoretic deposition. Thin Solid Films 612, 6671 (2016).Google Scholar
Das, D., Bagchi, B., and Basu, R.N.: Nanostructured zirconia thin film fabricated by electrophoretic deposition technique. J. Alloys Compd. 693, 12201230 (2017).CrossRefGoogle Scholar
Farrokhi-Rad, M.: Effect of dispersants on the electrophoretic deposition of hydroxyapatite-carbon nanotubes nanocomposite coatings. J. Am. Ceram. Soc. 99, 29472955 (2016).CrossRefGoogle Scholar
Khanali, O., Rajabi, M., Baghshahi, S., and Ariaee, S.: Suspension medium’s impact on the EPD of nano-YSZ on Fecralloy. Surf. Eng. 33, 310318 (2017).Google Scholar
Bhosale, A., Kadam, M., Joshi, R., Pawar, S., and Pawar, S.: Studies on electrophoretic deposition of nanocrystalline SDC electrolyte films. J. Alloys Compd. 484, 795800 (2009).Google Scholar
Fleckenstein, C., Mochales, C., Frank, S., Kochbeck, F., Zehbe, R., Fleck, C., and Mueller, W.D.: Tetragonal and cubic zirconia multilayered ceramics: Investigation of electrical parameters during automated EPD processing. Adv. Appl. Ceram. 113, 3541 (2014).Google Scholar
Ren, C., He, Y., and Wang, D.: Cyclic oxidation behavior and thermal barrier effect of YSZ–(Al2O3/YAG) double-layer TBCs prepared by the composite sol–gel method. Surf. Coat. Technol. 206, 14611468 (2011).CrossRefGoogle Scholar
Swadźba, R., Hetmańczyk, M., Wiedermann, J., Swadźba, L., Moskal, G., Witala, B., and Radwański, K.: Microstructure degradation of simple, Pt- and Pt + Pd-modified aluminide coatings on CMSX-4 superalloy under cyclic oxidation conditions. Surf. Coat. Technol. 215, 1623 (2013).Google Scholar
Aaron, J.M., Chan, H.M., Harmer, M.P., Abpamano, M., and Caram, H.S.: A phenomenological description of the rate of the aluminum/oxygen reaction in the reaction-bonding of alumina. J. Eur. Ceram. Soc. 25, 34133425 (2005).Google Scholar
Zhu, C., Javed, A., Li, P., Yang, F., Liang, G., and Xiao, P.: A study of the microstructure and oxidation behavior of alumina/yttria-stabilized zirconia (Al2O3/YSZ) thermal barrier coatings. Surf. Coat. Technol. 212, 214222 (2012).Google Scholar
Yao, J., He, Y., Wang, D., and Lin, J.: High-temperature oxidation resistance of (Al2O3–Y2O3)/(Y2O3-stabilized ZrO2) laminated coating on 8Nb–TiAl alloy prepared by a novel spray pyrolysis. Corros. Sci. 80, 1927 (2014).Google Scholar