Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T19:37:06.219Z Has data issue: false hasContentIssue false

Fabrication and characterization of concentric-tubular composite micro- and nanostructures using the template-synthesis method

Published online by Cambridge University Press:  31 January 2011

Veronica M. Cepak
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
John C. Hulteen
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Guangli Che
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Kshama B. Jirage
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Brinda B. Lakshmi
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Ellen R. Fisher
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Charles R. Martin*
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
*
a)Address correspondence to this author.[email protected]
Get access

Abstract

The template-synthetic method is a general approach for preparing tubular micro-and nanostructures. This method has been used to prepare micro- and nanostructures composed of metals, carbons, semiconductors, polymers, and Li+-intercalation materials. This paper describes the use of the template method to prepare composite tubular micro- and nanostructures. These composite structures consist of an outer tubule of one material surrounding inner tubules of different materials. Chemical strategies used to prepare these composite tubular structures include electroless deposition of Au, electropolymerization of conductive and insulating polymers, electrodeposition of metals and semiconductors, carbonization of polymer precursors, chemical vapor deposition synthesis, and sol-gel synthesis.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Martin, C. R., Science 266, 1961 (1994).CrossRefGoogle Scholar
2.Martin, C. R., Acc. Chem. Res. 28, 61 (1995).CrossRefGoogle Scholar
3.Martin, C. R., Chem. Mater. 8, 1739 (1996).CrossRefGoogle Scholar
4.Hulteen, J. C and Martin, C. R., J. Mater. Chem. 7, 1075 (1997).CrossRefGoogle Scholar
5.Cepak, V. M., Hulteen, J. C., Che, G., Jirage, K. B., Lakshmi, B. B., Fisher, E. R., Martin, C. R., and Yoneyama, H., J. Chem. Mater. 9, 1065 (1997).Google Scholar
6.Menon, V. P and Martin, C. R., Anal. Chem. 67, 1920 (1995).CrossRefGoogle Scholar
7.Menon, V. P., and Martin, C. R., Science 268, 700 (1995).Google Scholar
8.Cai, Z, Lei, J., Liang, W., Menon, V., and Martin, C. R., Chem. Mater. 3, 960 (1991).CrossRefGoogle Scholar
9.Bottin, J. R., McCurdy, P. R., and Fisher, E. R., Rev. Sci. Instrum. 68, 2149 (1997).CrossRefGoogle Scholar
10.Oyama, N., Ohsaka, T., Ohnuki, Y., and Suzuki, T., J. Electrochem. Soc. 134, 3068 (1987).CrossRefGoogle Scholar
11.Parthasarathy, R. V., Phani, K. L. N., and Martin, C. R., Adv. Mater. 7, 896 (1995).CrossRefGoogle Scholar
12.Brumlik, C. J and Martin, C. R., J. Am. Chem. Soc. 113, 3174 (1991).CrossRefGoogle Scholar
13.Che, G., Jirage, K., Martin, C. R., and Fisher, E. R., J. Electrochem. Soc. 144, 4296 (1977).CrossRefGoogle Scholar
14.Lewkebandara, T. S and Winter, C. H., Adv. Mater. 6, 237 (1994).CrossRefGoogle Scholar
15.Scrosati, B., Nature (London) 373, 557 (1995).CrossRefGoogle Scholar
16.Yoko, T., Kamiya, K., and Sakka, S., J. Ceram. Soc. Jpn. 95, 150 (1987).Google Scholar
17.Yoko, T, Yuasa, A., Kamiya, K., and Sakka, S., J. Electrochem. Soc. 138, 2279 (1991).CrossRefGoogle Scholar
18.Hagfeldt, A., Vlachopoulos, N., and Gratzel, M., J. Electrochem. Soc. 141, L82 (1994).CrossRefGoogle Scholar
19.Karan, L., Gratzel, M., Gilbert, S. E., Lemenz, C. K., and Scheel, H. J., J. Am. Chem. Soc. 118, 6716 (1996).Google Scholar
20.Lincot, D. and Peulon, S., Adv. Mater. 8, 166 (1996).Google Scholar
21.Nishizawa, M., Mukai, K., Kuwabata, S, Martin, C. R., and Yoneyama, H., J. Electrochem. Soc. 144, 1923 (1997).CrossRefGoogle Scholar
22.Lakshmi, B., Dorhout, P. K., and Martin, C. R., Chem. Mater. 9, 857 (1997).Google Scholar
23.Shin, H., Collins, R. J., Guire, M. R. D., Heuer, A. H., and Sukenik, C. N., J. Mater. Res. 10, 699 (1995).CrossRefGoogle Scholar
24.Shin, H., Collins, R. J., Guire, M. R. D., Heuer, A. H., and Sukenik, C. N., J. Mater. Res. 10, 692 (1995).CrossRefGoogle Scholar