Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T08:09:09.107Z Has data issue: false hasContentIssue false

Extracting the plastic properties of metal materials from microindentation tests: Experimental comparison of recently published methods

Published online by Cambridge University Press:  31 January 2011

Bruno Guelorget*
Affiliation:
Université de technologie de Troyes, Institut Charles DeLaunay CNRS FRE 2848, 10010 Troyes cedex, France
Manuel François
Affiliation:
Université de technologie de Troyes, Institut Charles DeLaunay CNRS FRE 2848, 10010 Troyes cedex, France
Cheng Liu
Affiliation:
National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing 100080, China
Jian Lu
Affiliation:
Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Experimental verifications have been performed on three engineering metals to verify recent methods proposed for extracting stress–strain curves from indentation tests. Their sensitivity to data errors is evaluated. Finally, the factors that might cause the inaccuracy and instability of the proposed methods are discussed, providing information that can be useful for further improving these methods.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tabor, D.: A simple theory of static and dynamic hardness, Proc. R. Soc. 92, 247 1948Google Scholar
2Tabor, D.: Hardness of Metals Cambridge University Press Cambridge, UK 1951Google Scholar
3Stilwell, N.A.Tabor, D.: Elastic recovery of conical indentations, Proc. Phys. Soc. LXXVIII, 169 1961Google Scholar
4Bulychev, S.I., Alekhin, V.P., Shorshorov, M.K., Ternovskii, A.P.Shnyrev, G.D.: Determining Young’s modulus from the indentor penetration diagram. Zovod. Lab. 41, 1137 1975Google Scholar
5Doerner, M.F.Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 1986CrossRefGoogle Scholar
6Oliver, W.C.Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
7Lee, K.W., Chung, Y.W., Chan, C.Y., Bello, I., Lee, S.T., Karimi, A., Patscheider, J., Delplancke-Ogletree, M.P., Yang, D., Boyce, B.Buchheit, T.: An international round-robin experiment to evaluate the consistency of nanoindentation hardness measurements of thin films. Surf. Coat. Technol. 168, 57 2003Google Scholar
8Chudoba, T., Schwarzer, N., Linss, V.Richter, F.: Determination of mechanical properties of graded coatings using nanoindentation. Thin Solid Films 469–470, 239 2005Google Scholar
9Chowdhury, S., Laugier, M.T.Rahman, I.Z.: Measurement of the mechanical properties of carbon nitride thin films from the nanoindentation loading curve. Diam. Relat. Mater. 13, 1543 2004Google Scholar
10Huang, L.Y., Lu, J.Xu, K.W.: The nano-scratch behaviour of different diamond-like carbon-film substrate. Appl. Phys. 37, 2135 2004Google Scholar
11Nelea, V., Pelletier, H., Mille, P.Muller, D.: High-energy ion beam implantation of hydroxyapatite thin films grown on TiNandZrO 2inter-layers pulsed laser deposition. Thin Solid Films 453–454, 208 2004CrossRefGoogle Scholar
12Roland, T., Retraint, D., Lu, K.Lu, J.: Fatigue life improvement through surface nanostructuring of stainless steel by means of residual mechanical attrition treatment. Scripta Mater. 54, 1949 2006CrossRefGoogle Scholar
13Giannakopoulos, A.E.Suresh, S.: Determination of elastoplastic properties by instrumented sharp indentation. Scripta Mater. 40, 1191 1999Google Scholar
14Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A.Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 2001CrossRefGoogle Scholar
15Bucaille, J.L., Stauss, S., Felder, E.Michler, J.: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 2003CrossRefGoogle Scholar
16Chollacoop, N., Dao, M.Suresh, S.: Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713 2003CrossRefGoogle Scholar
17Cao, Y.P.Lu, J.: A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 4023 2004CrossRefGoogle Scholar
18Cao, Y.P.Lu, J.: Size dependent sharp indentation. II. A reverse algorithm to identify plastic properties of metallic materials. J. Mech. Phys. Solids 53, 49 2005CrossRefGoogle Scholar
19Cao, Y.P., Qian, X.Q., Lu, J.Yao, Z.H.: An energy-based method to extract plastic properties of metal materials from conical indentation tests. J. Mater. Res. 20, 1194 2005Google Scholar
20Chollacoop, N.Ramamurty, U.: Experimental assessment of the representative strains in instrumented sharp indentation. Scripta Mater. 53, 247 2005Google Scholar
21Ogasawara, N., Chiba, N.Chen, X.: Measuring the plastic properties of bulk materials by single indentation test. Scripta Mater. 54, 65 2006CrossRefGoogle Scholar
22Zhao, M., Ogasawara, N., Chiba, N.Chen, X.: A new approach to measure the elastic-plastic properties of bulk materials using spherical indentation. Acta Mater. 54, 23 2006Google Scholar
23Beghini, M., Bertini, L.Fontanari, V.: Evaluation of the stress-strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 2441 2006Google Scholar
24Pelletier, H.: Predictive model to estimate the stress-strain curves of bulk metals using nanoindentation. Tribol. Int. 39, 593 2006Google Scholar
25Cheng, Y.T.Cheng, C.M.: Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters? J. Mater. Res. 14, 3493 1999Google Scholar
26Tho, K.K., Swaddiwudhipong, S., Liu, Z.S., Zeng, K.Hua, J.: Uniqueness of reverse analysis from conical indentation tests. J. Mater. Res. 19, 2498 2004Google Scholar
27Alkorta, J., Martinéz-Esnoala, J.M.Sevillano, J. Gil: Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load-penetration data. J. Mater. Res. 20, 432 2005Google Scholar
28Alkorta, J., Martinéz-Esnoala, J.M.Sevillano, J. Gil: Erratum: “Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load-penetration data.” J. Mater. Res. 20, 1369 2005CrossRefGoogle Scholar
29Casals, O.Alcalá, J.: The duality in mechanical property extraction from Vickers and Berkovich instrumented indentation experiments. Acta Mater. 53, 3545 2005CrossRefGoogle Scholar
30Ogasawara, N., Chiba, N.Chen, X.: Representative strain of indentation analysis. J. Mater. Res. 20, 2225 2005CrossRefGoogle Scholar
31Tyulyukovskiy, E.Huber, N.: Identification of viscoplastic material parameters from spherical indentation data: Part I. Neural networks. J. Mater. Res. 21, 664 2006CrossRefGoogle Scholar
32Klötzer, D., Ullner, C., Tyulyukovskiy, E.Huber, N.: Identification of viscoplastic material parameters from spherical indentation data: Part II. Experimental validation of the method. J. Mater. Res. 21, 677 2006Google Scholar
33Cao, Y.P.Lu, J.: Size dependent sharp indentation. I. A closed-form expression of the indentation loading curve. J. Mech. Phys. Solids 53, 33 2005CrossRefGoogle Scholar
34Cao, Y.P.Lu, J.: Depth-sensing instrumented indentation with dual sharp indenters: Stability analysis and corresponding regularization schemes. Acta Mater. 52, 1143 2004Google Scholar
35Loubet, J-L., Bauer, M., Tonck, A., Bec, S.Gauthier-Manuel, B.: Nanoindentation with a Surface Force Apparatus(Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993), pp 429 and 447CrossRefGoogle Scholar
36Hochstetter, G., Jimenez, A.Loubet, J-L.: Strain-rate effects on hardness of glassy polymers in the nanoscale range. Comparison between quasi-static and continuous stiffness measurements. J. Macromol. Sci.-Phys. B38, 681 1999Google Scholar
37Chollacoop, N.Ramamurty, U.: Robustness of algorithms for extracting plastic properties from the instrumented sharp indentation data. Mater. Sci. Eng., A 423, 41 2006Google Scholar
38Cao, Y.P.Huber, N.: A further investigation on the definition of the representative strain in conical indentation. J. Mater. Res. 21, 1810 2006Google Scholar
39Ogasawara, N., Chiba, N.Chen, X.: Erratum: “Representative strain of indentation analysis” [J. Mater. Res. 20, 2225 2005] and “Limit analysis-based approach to determine the material plastic properties with conical indentation”. J. Mater. Res. 21, 2699 2006. [J. Mater. Res. 21, 947 2006]Google Scholar
40Pelletier, H., Krier, J., Cornet, A.Mille, P.: Limits of using bilinear stress-strain curve for finite element modeling of nanoindentation response on bulk materials. Thin Solid Films 379, 147 2000CrossRefGoogle Scholar
41Antunes, J.M., Menezes, L.F.Fernandes, J.V.: Three-dimensional numerical simulation of Vickers indentation tests. Int. J. Solids Struct. 43, 784 2006CrossRefGoogle Scholar
42Taljat, B.Pharr, G.M.: Development of pile-up during spherical indentation of elastic-plastic solids. Int. J. Solids Struct. 41, 3891 2004CrossRefGoogle Scholar
43Mata, M.Alcalá, J.: The role of friction on sharp indentation. J. Mech. Phys. Solids 52, 145 2004Google Scholar
44Habbab, H., Mellor, B.G.Syngellakis, S.: Post-yield characterisation of metals with significant pile-up through spherical indentations. Acta Mater. 54, 1965 2006Google Scholar
45Joslin, D.L.Oliver, W.C.: A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5, 123 1990Google Scholar
46Bobji, M.S.Biswas, S.K.: Deconvolution of hardness data obtained from nanoindentation of rough surfaces. J. Mater. Res. 14, 2259 1999CrossRefGoogle Scholar
47Begley, M.R.Hutchinson, J.W.: The mechanics of size-dependent indentation. J. Mech. Phys. Solids 46, 2049 1998CrossRefGoogle Scholar
48Nix, W.D.Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 1998Google Scholar
49Manika, I.Maniks, J.: Size effects in micro- and nanoscale indentation. Acta Mater. 54, 2049 2006Google Scholar