Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T16:03:21.082Z Has data issue: false hasContentIssue false

Externally directed assembly of disk-shaped zeolite particles by an electric field

Published online by Cambridge University Press:  25 January 2011

Manish Mittal
Affiliation:
Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716
Raul F. Lobo
Affiliation:
Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716
Eric M. Furst*
Affiliation:
Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Alternating current (AC) electric fields generated by coplanar electrodes are used to externally direct the assembly of submicrometer sized disk-shaped zeolite particles. At the edge of the electrode, zeolite particles assemble in a brushlike structure that forms because of an interplay between an induced dipolar interaction and the drag force due to AC electroosmotic flow. Far from the electrode edge, where the fluid is quiescent, the disk-shaped particles form a nearly hexagonally close-packed structure, similar to suspensions of spherical particles. These results demonstrate a surprising generality of field-directed structures and offer promise for a hierarchical fabrication of nanostructures from zeolites.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Grzelczak, M., Vermant, J., Furst, E.M., and Liz-Marzán, L.M.: Directed self-assembly of nanoparticles. ACS Nano 4, 35913605 (2010).CrossRefGoogle ScholarPubMed
2.Lumsdon, S.O., Kaler, E.W., and Velev, O.D.: Two-dimensional crystallization of microspheres by coplanar AC electric field. Langmuir 20, 21082116 (2004).CrossRefGoogle ScholarPubMed
3.Mittal, M., Lele, P.P., Kaler, E.W., and Furst, E.M.: Polarization and interactions of colloidal particles in AC electric fields. J. Chem. Phys. 129, 064513 (2008).CrossRefGoogle ScholarPubMed
4.Gong, T., Wu, D.T., and Marr, D.W.M.: Two-dimensional electrohydrodynamically-induced colloidal phases. Langmuir 18, 1006410067 (2002).CrossRefGoogle Scholar
5.Gong, T., Wu, D.T., and Marr, D.W.M.: Electric field-reversible three-dimensional colloidal crystals. Langmuir 19, 59675970 (2003).CrossRefGoogle Scholar
6.Ristenpart, W.D., Aksay, I.A., and Saville, D.A.: Electrically guided assembly of planar superlattices in binary colloidal suspensions. Phys. Rev. Lett. 90 128303 (2003).CrossRefGoogle ScholarPubMed
7.Fagan, J.A., Sides, P.J., and Prieve, D.C.: Evidence of multiple electrohydrodynamic forces acting on a colloidal particle near an electrode due to an alternating current electric field. Langmui 21, 17841794 (2005).CrossRefGoogle Scholar
8.Singh, J.P., Lele, P.P., Nettesheim, F., Wagner, N.J., and Furst, E.M.: One- and two-dimensional assembly of colloidal ellipsoids in AC electric fields. Phys. Rev. E 79, 050401(R) (2009).CrossRefGoogle ScholarPubMed
9.Ding, T., Song, K., Clays, K., and Tung, C-H.: Fabrication of 3D photonic crystals of ellipsoids: Convective self-assembly in magnetic field. Adv. Mater. 27, 15 (2009).Google Scholar
10.Mittal, M. and Furst, E.M.: Electric field-directed convective assembly of ellipsoidal colloidal particles to create optically and mechanically anisotropic thin films. Adv. Funct. Mater. 19, 32713278 (2009).CrossRefGoogle Scholar
11.Mittal, M., Niles, R.K., and Furst, E.M.: Flow-directed assembly of nanostructured thin films from suspensions of anisotropic titania particles. Nanoscale 2, 22372243 (2010).CrossRefGoogle ScholarPubMed
12Tosheva, L. and Valtchev, V.P.: Nanozeolites: Synthesis, crystallization mechanism, and applications. Chem. Mater. 17, 24922513 (2005).CrossRefGoogle Scholar
13.Lin, J-C. and Yates, M.Z.: Altering the crystal morphology of silicalite-1 through microemulsion-based synthesis. Langmuir 21, 21172120 (2005).CrossRefGoogle ScholarPubMed
14.Roeffaers, M.B.J., Ameloot, R., Baruah, M., Uji-i, H., Bulut, M., Cremer, G.D., Mller, U., Jacobs, P.A., Hofkens, J., Sels, B.F., and Vos, D.E.D.: Morphology of large ZSM-5 crystals unraveled by fluorescence microscopy. J. Am. Chem. Soc. 130, 57635772 (2008).CrossRefGoogle ScholarPubMed
15.Lai, Z., Bonilla, I., Diaz, G., Nery, J.G., Sujaoti, K., Amat, M.A., Kokkoli, E., Terasaki, R.W., Thompson, O., Tsapatsis, M., and Vlachos, D.G.: Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300, 456460 (2008).CrossRefGoogle Scholar
16.Davis, M.E.: Ordered porous materials for emerging applications. Nature 417, 813821 (2002).CrossRefGoogle ScholarPubMed
17.Holland, B.T., Blanford, C.F., and Stein, A.: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Nature 281, 538540 (1998).Google ScholarPubMed
18.Feng, S. and Bein, T.: Growth of oriented molecular sieve crystals on organophosphonate films. Nature 368, 834836 (1994).CrossRefGoogle Scholar
19.Lee, J.S., Lee, Y-J., Tae, E.L., Park, Y.S., and Yoon, K.B.:Synthesis of zeolite as ordered multicrystal arrays. Science 301, 818821 (2003).CrossRefGoogle ScholarPubMed
20.Ha, K., Lee, Y-J., Lee, H.J., and Yoon, K.B., Facile assembly of zeolite monolayers on glass, silica, alumina, and other zeolites using 3-halopropylsilyl reagents as covalent linkers. Adv. Mater. 12, 11141117 (2000).3.0.CO;2-5>CrossRefGoogle Scholar
21.Lee, J.S., Ha, K., Lee, Y-J., and Yoon, K.B.: Ultrasound-aided remarkably fast assembly of monolayers of zeolite crystals on glass with a very high degree of lateral close packing. Adv. Mater. 17, 837841 (2005).CrossRefGoogle Scholar
22.Boudreau, L.C., Kuck, J.A., and Tsapatsis, M.: Deposition of oriented zeolite a films: In situ and secondary growth. J. Membr. Sci. 152, 4159 (1999).CrossRefGoogle Scholar
23.Lee, G.S., Lee, Y-C., and Yoon, K.B.: Layer-by-layer assembly of zeolite crystals on glass with polyelectrolytes as ionic linkers. J. Am. Chem. Soc. 123, 97699779 (2001).CrossRefGoogle ScholarPubMed
24.Ban, T., Ohwaki, T., Ohya, Y., and Takahashi, Y.: Preparation of a completely oriented molecular sieve membrane. Angew. Chem. Intl. Ed. 38, 33243326 (1999).3.0.CO;2-J>CrossRefGoogle ScholarPubMed
25.Lee, J.A., Meng, L., Norris, D.J., Scriven, L.E., and Tsapatsis, M.: Colloidal crystal layers of hexagonal nanoplates by convective assembly. Langmuir 22 (2006).CrossRefGoogle ScholarPubMed
26.Kragten, D.D., Fedeyko, K.R., Rimer, J.D., Vlachos, D.G., Lobo, R.F., and Tsapatsis, M.: Structure of the silica phase extracted from silica/(TPA)Oh solutions containing nanoparticles. J. Phys. Chem. B 107, 1000610016 (2003).CrossRefGoogle Scholar
27.Rimer, J.D., Fedeyko, K.R., Vlachos, D.G., and Lobo, R.F.: Silica self-assembly and synthesis of microporous and mesoporous silicates. Chem. Eur. J. 12, 29262934 (2006).CrossRefGoogle ScholarPubMed
28.Sveen, J.K.: MatPIV[software], See http://folk.uio.no/jks/matpiv/ for PIV codes.Google Scholar
29.Green, N.G., Ramos, A., Gonzalez, A., Morgan, H., and Castellanos, A.: Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. I. experimental measurements. Phys. Rev. E. 61, 40114018 (2000).CrossRefGoogle ScholarPubMed
30.Green, N.G., Ramos, A., Gonzalez, A., Morgan, H., and Castellanos, A.: Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. III. observation of streamlines and numerical simulation. Phys. Rev. E, 66, 026305 (2002).CrossRefGoogle ScholarPubMed
31.Squires, T.M.: Induced-charge electro-kinetics: Fundamental challenges and opportunities. Lab Chip 9, 24772483 (2009).CrossRefGoogle Scholar
32.Bhatt, K.H., Grego, S., and Velev, O.D.: An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. Langmuir. 21, 66036612 (2005).CrossRefGoogle Scholar
33.Muller, T., Gerardino, A., Schnelle, T., Shirley, S.G., Bordoni, F., Gasperis, G.D., Leoni, R., and Fuhr, G.: Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces. J. Phys. D: Appl. Phys. 29, 340349 (1996).CrossRefGoogle Scholar
34.Lele, P.P., Mittal, M., and Furst, E.M.: Anomalous particle rotation and resulting microstructures of colloids in Ac electric fields. Langmuir 24, 1284212848 (2008).CrossRefGoogle ScholarPubMed
35.Ui, T.J., Hussey, R.G., and Roper, R.P.: Stokes drag on a cylinder in axial motion. Phys. Fluids 27, 787795 (1984).CrossRefGoogle Scholar
36.Venermo, J. and Sihvola, A.: Dielectric polarizability of circular cylinder. J. Electrost. 63, 101117 (2005).CrossRefGoogle Scholar
Supplementary material: PDF

Mittal Supplementary Material

Mittal Supplementary Material

Download Mittal Supplementary Material(PDF)
PDF 121.5 KB