Article contents
Evaluation of tensile yield strength of high-density polyethylene in flat-ended cylindrical indentation: An analytic approach based on the expanding cavity model
Published online by Cambridge University Press: 10 January 2020
Abstract
The tensile yield strength of high-density polyethylene using instrumented indentation tests with a flat-ended cylindrical indenter was evaluated. The variation in the field expressed by stress and strain beneath the flat-ended cylindrical indenter is investigated using a new expanding cavity model to study the relation between tension and indentation. This model starts from the separation of forces into the compressive force on the material and the frictional one, which is generated during indentation on the sides of indenter. The authors propose a method to correct the frictional force based on the saturation of indentation hardening and obtain load–depth curve with compressive component only. For conversion of indentation force and displacement, our new representation model is applied. By modifying Johnson's model, the new assumption of conservation of indentation plastic volume is suggested. This model proves and supports conventional relations of the strain rates between indentation and tension theoretically. These are verified through the experiments: instrumented indentation and uniaxial tensile test. The authors find a good agreement between the tensile yield strengths at various strain rates.
- Type
- Article
- Information
- Copyright
- Copyright © Materials Research Society 2020
Footnotes
These authors contributed equally to this work.
References
- 7
- Cited by