Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T05:06:28.650Z Has data issue: false hasContentIssue false

Estimation of the infrared absorption of ZnCl2–KBr glass by molecular dynamics

Published online by Cambridge University Press:  31 January 2011

Satoru Inoue
Affiliation:
Department of Inorganic Materials, Tokyo Institute of Technology, 2-21-1 Ookayama, Meguro-ku, Tokyo 152 Japan
Mitsuru Tamaki
Affiliation:
Department of Inorganic Materials, Tokyo Institute of Technology, 2-21-1 Ookayama, Meguro-ku, Tokyo 152 Japan
Hiroshi Kawazoe
Affiliation:
Department of Inorganic Materials, Tokyo Institute of Technology, 2-21-1 Ookayama, Meguro-ku, Tokyo 152 Japan
Masayuki Yamane
Affiliation:
Department of Inorganic Materials, Tokyo Institute of Technology, 2-21-1 Ookayama, Meguro-ku, Tokyo 152 Japan
Get access

Abstract

Molecular dynamic calculations have been made on glasses in the ZnCl2–KBr system in order to estimate the infrared (IR) absorption of these glasses. Oxygen-free glass was estimated to be transparent up to 25 μm. Glasses containing oxygen impurities were estimated to be transparent only up to 16 μm, with a weak absorption band around 10.4 μm. This agrees with experimental results of glasses in the ZnCl2–KBr–PbBr2 system.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yamane, M.Kawazoe, H.Inoue, S. and Maeda, K.Mater. Res. Bull. 20, 905 (1985).CrossRefGoogle Scholar
2Angell, C. A. and Wong, J.J. Chem. Phys. 53, 2053 (1970).CrossRefGoogle Scholar
3Handbook of Chemistry and Physics (Chemical Rubber Co., Orlando, FL, 1983-1984), 6th ed., p. B123.Google Scholar
4Busing, W. R.J. Chem. Phys. 57, 3008 (1972).CrossRefGoogle Scholar
5Woodcock, L. V.Angell, C. A. and Cheeseman, P.J. Chem. Phys. 65, 1565 (1976).CrossRefGoogle Scholar
6Fumi, F. G. and Tosi, M. P.J. Phys. Chem. Solids 25, 31 (1964); 25, 45 (1964).CrossRefGoogle Scholar
7Erwin, J. A. and Wright, A. C.J. Non-Cryst. Solids 51, 57 (1982).Google Scholar
8Abrahams, S. C. and Bernstein, S. L.Acta Crystallogr. B 25, 1233 (1969).Google Scholar
9Ewald, P. D.Ann. Phys. 64, 253 (1921).Google Scholar
10Hirao, K. and Soga, N.J. Ceram. Soc. Jpn. 90, 11 (1982).Google Scholar
11Woodcock, L. V.Advances in Molten Salt Chemistry (Plenum, New York, 1975), Vol. 3, p. 15.Google Scholar
12Berens, P. H. and Wilson, K. R.J. Chem. Phys. 14, 4872 (1981).Google Scholar
13Harris, F. J.Proc. IEEE 56, 51 (1978).Google Scholar
14Angell, C. A. and Cheeseman, P.J. Non-Cryst. Solids 49, 63 (1982).Google Scholar
15Imaoka, M.J. Ceram. Soc. Jpn. 79, 97 (1971).Google Scholar
16Levy, H. A.Ann. N.Y. Acad. Sci. 79, 762 (1960).CrossRefGoogle Scholar
17Stasiw, O. and Teltow, J.Struct. Rep. 13, 394 (1950).Google Scholar
18Vegard, L.Struct. Rep. 11, 485 (1947).Google Scholar