Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T17:56:26.746Z Has data issue: false hasContentIssue false

Epitaxial growth of Mn-doped γ-Ga2O3 on spinel substrate

Published online by Cambridge University Press:  28 February 2011

Hiroyuki Hayashi*
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan
Rong Huang
Affiliation:
Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan; and Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062, China
Fumiyasu Oba*
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan
Tsukasa Hirayama
Affiliation:
Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
Isao Tanaka
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan; and Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Mn-doped γ-Ga2O3 thin films with a defective spinel structure have been epitaxially grown on spinel (100) substrates using pulsed laser deposition. The crystal quality of the films is strongly dependent on preparation conditions, particularly substrate temperature and laser energy density, as well as Mn concentration. In the 7 cation% Mn-doped film grown under the optimized conditions, the full width at half maximum in the x-ray diffraction rocking curve for the (400) plane is 117 arcsec and the root-mean-square roughness of the surface is approximately 0.4 nm. These values are comparable to those of the spinel substrate. The film shows a uniform tetragonal distortion with a tetragonality of 1.05.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Minami, T.: Oxide thin-film electroluminescent devices and materials. Solid-State Electron. 47, 2237 (2003).CrossRefGoogle Scholar
2.Ueda, N., Hosono, H., Waseda, R., and Kawazoe, H.: Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl. Phys. Lett. 70, 3561 (1997).CrossRefGoogle Scholar
3.Orita, M., Ohta, H., Hirano, M., and Hosono, H.: Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl. Phys. Lett. 77, 4166 (2000).CrossRefGoogle Scholar
4.Orita, M., Hiramatsu, H., Ohta, H., Hirano, M., and Hosono, H.: Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures. Thin Solid Films 411, 134 (2002).CrossRefGoogle Scholar
5.Matsuzaki, K., Yanagi, H., Kamiya, T., Hiramatsu, H., Nomura, K., Hirano, M., and Hosono, H.: Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3. Appl. Phys. Lett. 88, 092106 (2006).CrossRefGoogle Scholar
6.Oshima, T., Okuno, T., and Fujita, S.: Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn. J. Appl. Phys. 46, 7217 (2007).CrossRefGoogle Scholar
7.Kokubun, Y., Miura, K., Endo, F., and Nakagomi, S.: Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors. Appl. Phys. Lett. 90, 031912 (2007).CrossRefGoogle Scholar
8.Ogita, M., Higo, K., Nakanishi, Y., and Hatanaka, Y.: Ga2O3 thin film for oxygen sensor at high temperature. Appl. Surf. Sci. 175, 721 (2001).CrossRefGoogle Scholar
9.Hayashi, H., Huang, R., Ikeno, H., Oba, F., Yoshioka, S., Tanaka, I., and Sonoda, S.: Room temperature ferromagnetism in Mn-doped γ-Ga2O3 with spinel structure. Appl. Phys. Lett. 89, 181903 (2006).CrossRefGoogle Scholar
10.Roy, R., Hill, V.G., and Osborn, E.F.: Polymorphism of Ga2O3 and the system Ga2O3–H2O. J. Am. Chem. Soc. 74, 719 (1952).CrossRefGoogle Scholar
11.Shinohara, D. and Fujita, S.: Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn. J. Appl. Phys. 47, 7311 (2008).CrossRefGoogle Scholar
12.Yoshioka, S., Hayashi, H., Kuwabara, A., Oba, F., Matsunaga, K., and Tanaka, I.: Structures and energetics of Ga2O3 polymorphs. J. Phys. Condens. Matter 19, 346211 (2007).CrossRefGoogle Scholar
13.Huang, R., Hayashi, H., Oba, F., and Tanaka, I.: Microstructure of Mn-doped γ-Ga2O3 epitaxial film on sapphire (0001) with room temperature ferromagnetism. J. Appl. Phys. 101, 063526 (2007).CrossRefGoogle Scholar
14.Parratt, L.G.: Surface studies of solids by total reflection of x-rays. Phys. Rev. 95, 359 (1954).CrossRefGoogle Scholar
15.Ohnishi, T., Koinuma, H., and Lippmaa, M.: Pulsed laser deposition of oxide thin films. Appl. Surf. Sci. 252, 2466 (2006).CrossRefGoogle Scholar
16.Ohnishi, T., Lippmaa, M., Yamamoto, T., Meguro, S., and Koinuma, H.: Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition. Appl. Phys. Lett. 87, 241919 (2005).CrossRefGoogle Scholar
17.Hong, J., Bae, J., Wang, Z.L., and Snyder, R.L.: Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays. Nanotech. 20, 085609 (2009).CrossRefGoogle ScholarPubMed
18.Zinkevich, M., Morales, F.M., Nitsche, H., Ahrens, M., Rühle, M., and Aldinger, F.: Microstructual and thermodynamic study of γ-Ga2O3. Z. Metallkd. 95, 9 (2004).CrossRefGoogle Scholar
19.Boucher, B., Herpin, A.G., and Oles, A.: Antiferromagnetism of the spinel MnGa2O4. J. Appl. Phys. 37, 960 (1966).CrossRefGoogle Scholar
20.Langjahr, P.A., Lange, F.F., Wagner, T., and Rühle, M.: Lattice mismatch accommodation in perovskite films on perovskite substrates. Acta Mater. 46, 773 (1998).CrossRefGoogle Scholar
21.Ernst, F., Rečnik, A., Langjahr, P.A., Nellist, P.D., and Rühle, M.: Atomistic structure of misfit dislocations in SrZrO3/SrTiO3 interfaces. Acta Mater. 47, 183 (1998).CrossRefGoogle Scholar
22.Oba, F., Sugawara, Y., Hasegawa, K., Izumi, T., Shiohara, Y., Hirayama, T., Yamamoto, T., and Ikuhara, Y.: Effectiveness of BaZrO3 buffer layer in SmBa2Cu3Oy epitaxial growth on MgO substrate: A first-principles study. J. Appl. Phys. 95, 2309 (2004).CrossRefGoogle Scholar