Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:44:50.479Z Has data issue: false hasContentIssue false

Enthalpy of Formation of Rare-earth Silicates Y2SiO5 and Yb2SiO5 and N-containing Silicate Y10(SiO4)6N2

Published online by Cambridge University Press:  31 January 2011

Jian-Jie Liang
Affiliation:
Thermochemistry Facility, Chemistry Building, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616
Alexandra Navrotsky
Affiliation:
Thermochemistry Facility, Chemistry Building, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616
Thomas Ludwig
Affiliation:
Max-Planck-Institut für Metallforschung and Universität Stuttgart, Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, D-70569 Stuttgart, Germany
Hans J. Seifert
Affiliation:
Max-Planck-Institut für Metallforschung and Universität Stuttgart, Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, D-70569 Stuttgart, Germany
Fritz Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung and Universität Stuttgart, Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, D-70569 Stuttgart, Germany
Get access

Abstract

The enthalpies of formation of two rare-earth silicates (Y2SiO5 and Yb2SiO5) and a N-containing rare-earth silicate Y10(SiO4)6N2 have been determined using high-temperature drop solution calorimetry. Alkali borate (52 wt% LiBO2·48 wt% NaBO2) solvent was used at 800 °C, and oxygen gas was bubbled through the melt. The nitrogen-containing silicate was oxidized during dissolution. The standard enthalpies of formation are for Y2SiO5, Yb2SiO5, and Y10(SiO4)6N2, respectively, –22868.54 ± 5.34, –22774.75 ± 8.21, and –14145.20 ± 16.48 kJ/mol from elements, and –52.53 ± 4.83, –49.45 6 ± 8.35, and –94.53 ± 11.66 kJ/mol from oxides (Y2O3 or Yb2O3, SiO2) and nitride (Si3N4). The silicates and N-containing silicate are energetically stable with respect to binary oxides and Si3N4, but the N-containing silicate may be metastable with respect to assemblages containing Y2SiO5, Si3N4, and SiO2. A linear relationship was found between the enthalpy of formation of a series of M2SiO5 silicates from binary oxides and the ionic potential (z/r) of the metal cation.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sanders, W.A. and Mieskowsky, D.M., Am. Ceram. Soc. Bull. 64, 304 (1985).Google Scholar
2.Hirosaki, N., Okada, A., and Matoba, K., J. Am. Ceram. Soc. 71, C144, (1988).CrossRefGoogle Scholar
3.Kim, D-H. and Kim, C.H., J. Am. Ceram. Soc. 73, 1431 (1990).CrossRefGoogle Scholar
4.Cinibulk, M.K. and Thomas, G., J. Am. Ceram. Soc. 75, 2037 (1992).CrossRefGoogle Scholar
5.Ekstrom, T. and Nygren, , J. Am. Ceram. Soc. 75, 259 (1992).CrossRefGoogle Scholar
6.Hoffmann, M.J. and Petzow, G., in Silicon Nitride Ceramics—Scientific and Technological Advances, edited by Chen, I-W., Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 3.Google Scholar
7.Zhang, Z., J. Am. Ceram. Soc. 79, 530 (1996).Google Scholar
8.Kolitsch, U., Ijevskii, V., Seifert, H.J., Wiedmann, I., and Aldinger, F., J. Mater. Sci. 32, 61356139 (1997).CrossRefGoogle Scholar
9.Jack, K.H. and Wilson, W. I., Nature Phys. Sci. 238, 28 (1972).CrossRefGoogle Scholar
10.Navrotsky, A., Phys. Chem. Min. 24, 222 (1997).CrossRefGoogle Scholar
11.Navrotsky, A., Am. Mineral. 79, 589 (1994).Google Scholar
12.Felsche, J., Struct. Bonding 13, 99 (1973).CrossRefGoogle Scholar
13.Navrotsky, A., Risbud, S.H., Liang, J-J., and Leppert, V.J., J. Phys. Chem. B 101, 9433 (1997).CrossRefGoogle Scholar
14.Robie, R.A. and Hemingway, B.S., Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 pascals) Pressure and High Temperatures, U.S. Geol. Survey Bull. 2131 (U.S Geological Survey, Washington, DC, 1995).Google Scholar