Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T04:13:48.279Z Has data issue: false hasContentIssue false

Enhanced photocatalytic activities on Bi2O2CO3/ZnWO4 nanocomposites

Published online by Cambridge University Press:  27 February 2014

Na Tian
Affiliation:
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Hongwei Huang*
Affiliation:
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Yihe Zhang*
Affiliation:
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Ying He*
Affiliation:
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Bi2O2CO3/ZnWO4 composite photocatalysts have been successfully synthesized by a mixed calcination method after hydrothermal process. The catalysts were characterized by powder x-ray diffraction, scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, x-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectrum. The results showed that the hierarchical Bi2O2CO3/ZnWO4 nanocomposites were obtained by mixed grinding calcination method and Bi2O2CO3 nanospheres grow on the primary ZnWO4 particles. The Bi2O2CO3/ZnWO4 composites exhibit higher photocatalytic activities compared to pure ZnWO4 and Bi2O2CO3 particles under UV light irradiation. Furthermore, the excellent photocatalytic efficiency of the Bi2O2CO3/ZnWO4 composite was deduced closely related to Bi2O2CO3/ZnWO4 heterojunctions whose presence is generally regarded to be a favorable factor for the separation of photogenerated electrons and holes.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yin, L.F., Dai, Y.R., and Niu, J.F.: Crystalline transformation and photocatalytic performance of Bi2O3 by yttrium doping. Mater. Lett. 92, 372 (2013).CrossRefGoogle Scholar
Wang, W.J., Cheng, H.F., Huang, B.B., Lin, X.J., Qin, X.Y., Zhang, X.Y., and Dai, Y.: Synthesis of Bi2O2CO3/Bi2S3 hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants. J. Colloid Interface Sci. 402, 34 (2013).CrossRefGoogle ScholarPubMed
Tong, H., Ouyang, S.X., Bi, Y.P., Umezawa, N.T., Oshikiri, M.T., and Ye, J.H.: Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229 (2012).Google Scholar
Kubacka, A.N., Fernandez-Garcia, M.C., and Colon, G.D.: Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555 (2012).CrossRefGoogle ScholarPubMed
Yu, H., Chen, M., Philip, M.R., Wang, S.X., White, R.L., and Sun, S.H.: Dumbbell-like bifunctional Au−Fe3O4 nanoparticles. Nano Lett. 5, 379 (2005).Google Scholar
Bandara, J., Hadapangoda, C.C., and Jayasekera, W.G.: TiO2/MgO composite photocatalyst: The role of MgO in photoinduced charge carrier separation. Appl. Catal., B 50, 83 (2004).Google Scholar
Sun, H., Fan, W., Li, Y., Cheng, X.F., Li, P., and Zhao, X.: Origin of the improved photo-catalytic activity of F-doped ZnWO4: A quantum mechanical study. J. Solid State Chem. 183, 3052 (2010).Google Scholar
Nagirnyi, V., Jonsson, L., Kirm, M., Kotlov, A., Lushchik, A., Martinson, I., Watterich, A., and Zadneprovski, B.I.: Luminescence study of pure and Fe- or Mo-doped ZnWO4 crystals. Radiat. Meas. 38, 519 (2004).CrossRefGoogle Scholar
Murcia Lopez, S., Hidalgo, M.C., Navio, J.A., and Colon, G.: Novel Bi2WO6/TiO2 heterostructures for Rhodamine B degradation under sunlike irradiation. J. Hazard. Mater. 185, 1425 (2011).Google Scholar
Ivana, L.J., Validzic, T.S., and Radenka, M.K.: Synthesis, strong room-temperature PL and photocatalytic activity of ZnO/ZnWO4 rod-like nanoparticles. Mater. Sci. Eng., B 177, 645 (2012).Google Scholar
He, D.Q., Wang, L.L., and Xu, D.D.: Investigation of photocatalytic activities over Bi2WO6/ZnWO4 composite under UV light and its photoinduced charge transfer properties. ACS Appl. Mater. Interfaces 3, 3167 (2011).Google Scholar
Liu, Y.Y.; Wang, Z.Y., Huang, B.B., Yang, K.S., Zhang, X.Y., Qin, X.Y., and Dai, Y.D.: Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet. Appl. Surf. Sci. 257, 172 (2010).CrossRefGoogle Scholar
Gan, H.H., Zhang, G.K., and Huang, H.X.: Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites. J. Hazard. Mater. 250251, 131 (2013).Google Scholar
Huang, H.W., Qi, H.J., He, Y., Tian, N., and Zhang, Y.H.: Enhanced photocatalytic activity of Eu3+ and Gd3+ doped BiPO4 . J. Mater. Res. 28, 2977 (2013).Google Scholar
Chen, L., Huang, R., Yin, S.F., Luo, S.L., and Au, C.T.: Flower-like Bi2O2CO3: Facile synthesis and their photocatalytic application in treatment of dye-containing wastewater. Chem. Eng. J. 193194, 123 (2012).CrossRefGoogle Scholar
Chen, R., So, M.H., Yang, J., Deng, F., Che, C.M., and Sun, H.Z.: Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate. Chem. Commun. 21, 2265 (2006).Google Scholar
Cheng, H.F., Huang, B.B., Yang, K.S., Wang, Z.Y., Qin, X.Y., Zhang, X.Y., and Dai, Y.: Facile template-free synthesis of Bi2O2CO3 hierarchical microflowers and their associated photocatalytic activity. Chem. Phys. Chem. 11, 2167 (2010).Google Scholar
Wang, H., Wu, Z., and Liu, Y.: A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres. J. Phys. Chem. C 113, 13317 (2009).CrossRefGoogle Scholar
Chen, L., Yin, S.F., Luo, S.L., Huang, R., Zhang, Q., Hong, T., and Au, P.C.T.: Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater. Ind. Eng. Chem. Res. 51, 6760 (2012).CrossRefGoogle Scholar
Montini, T., Gombac, V., Hameed, A., Felisari, L., Adami, G., and Fornasiero, P.: Synthesis, characterization and photocatalytic performance of transition metal tungstates. Chem. Phys. Lett. 498, 113 (2010).Google Scholar
Yayapao, O., Thongtem, T., Phuruangrat, A., and Thongtem, S.: CTAB-assisted hydrothermal synthesis of tungsten oxide microflowers. J. Alloys Compd. 509, 2294 (2011).Google Scholar
Butler, M.A. and Ginley, D.S.: Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc. 125, 228 (1978).Google Scholar
Huang, H.W., He, Y., Lin, Z.S., Kang, L., and Zhang, Y.H.: Two novel Bi-based borate photocatalysts: Crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation. J. Phys. Chem. C 117, 22986 (2013).Google Scholar