Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T15:53:21.278Z Has data issue: false hasContentIssue false

Electrospun TiO2 nanowires for hybrid photovoltaic cells

Published online by Cambridge University Press:  12 July 2011

Surawut Chuangchote
Affiliation:
Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
Takashi Sagawa*
Affiliation:
Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
Susumu Yoshikawa
Affiliation:
Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A simple and controllable fabrication of TiO2 nanowires by electrospinning and their applications to the electron transporting layer for hybrid organic–inorganic photovoltaic cells are reported. TiO2 nanowires were directly electrospun onto an indium tin oxide on glass substrate from a solution in methanol of polyvinylpyrrolidone, titanium(IV) butoxide, and acetylacetone. The nanowire electrode obtained was consequently subjected to calcination at 450 °C. Solution of blended [6,6]-phenyl-C61-butyric acid methyl ester and poly(3-hexylthiophene) was spin coated on the TiO2 nanowire electrode, followed by thermal annealing and deposition of Au electrode. Hybrid organic–inorganic photovoltaic cells made of TiO2 nanowires exhibited remarkable improvement of the cell efficiencies in terms of photocurrent density and open-circuit voltage as compared with those of references, TiO2 flat films. Maximum energy conversion efficiency of hybrid organic–inorganic photovoltaic cells made of TiO2 nanowires of 1.27% was achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yu, G., Gao, J., Hummelen, J.C., Wudl, F., and Heeger, A.J.: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789 (1995).Google Scholar
2.Chuangchote, S., Ruankham, P., Sagawa, T., and Yoshikawa, S.: Improvement of power conversion efficiency in organic photovoltaics by slow cooling in annealing treatment. Appl. Phys. Express 3, 122302 (2010).Google Scholar
3.Ma, W., Yang, C., Gong, X., Lee, K., and Heeger, A.J.: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617 (2005).Google Scholar
4.Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., and Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864 (2005).Google Scholar
5.Reyes-Reyes, M., Kim, K., and Carroll, D.L.: High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl. Phys. Lett. 87, 083506 (2005).Google Scholar
6.Brabec, C.J., Sariciftci, N.S., and Hummelen, J.C.: Plastic solar cell. Adv. Funct. Mater. 11, 15 (2001).3.0.CO;2-A>CrossRefGoogle Scholar
7.Huynh, W.U., Dittmer, J.J., and Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002).CrossRefGoogle ScholarPubMed
8.White, M.S., Olson, D.C., Shaheen, S.E., Kopidakis, N., and Ginley, D.S.: Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006).CrossRefGoogle Scholar
9.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Appl. Phys. Lett. 91, 152111 (2007).Google Scholar
10.Steim, R., Choulis, S.A., Schilinsky, P., and Brabec, C.J.: Interface modification for highly efficient organic photovoltaics. Appl. Phys. Lett. 92, 093303 (2008).Google Scholar
11.Yang, T., Cai, W., Qin, D., Wang, E., Lan, L., Gong, X., Peng, J., and Cao, Y.: Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J. Phys. Chem. C 114, 6849 (2010).Google Scholar
12.Cheng, Y.-J., Hsieh, C.-H., He, Y., Hsu, C.-S., and Li, Y.: Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J. Am. Chem. Soc. 132, 17381 (2010).Google Scholar
13.Chuangchote, S., Jitputti, J., Sagawa, T., and Yoshikawa, S.: Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl. Mater. Interfaces 1, 1140 (2009).CrossRefGoogle ScholarPubMed
14.Chuangchote, S., Sagawa, T., and Yoshikawa, S.: Electrospinning of poly(vinyl pyrrolidone): Solvent effects on electrospinnability for fabrication of poly(p-phenylene vinylene) and TiO2 nanofibers. J. Appl. Polym. Sci. 114, 2777 (2009).Google Scholar
15.Chuangchote, S., Sagawa, T., and Yoshikawa, S.: Efficient dye-sensitized solar cells using electrospun TiO2 nanofibers as a light harvesting layer. Appl. Phys. Lett. 93, 033310 (2008).Google Scholar
16.Savenije, T.J., Warman, J.M., and Goossens, A.: Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer. Chem. Phys. Lett. 287, 148 (1998).Google Scholar
17.Arango, A.C., Johnson, L.R., Bliznyuk, V.N., Schlesinger, Z., Carter, S.A., and Horhold, H.-H.: Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion. Adv. Mater. 12, 1689 (2000).Google Scholar
18.Kim, S.-S., Jo, J., Chun, C., Hong, J.-C., and Kim, D.-Y.: Hybrid solar cells with ordered TiO2 nanostructures and MEH-PPV. J. Photochem. Photobiol. Chem. 188, 364 (2007).CrossRefGoogle Scholar
19.Wei, Q., Hirota, K., Tajima, K., and Hashimoto, K.: Design and synthesis of TiO2 nanorod assemblies and their application for photovoltaic devices. Chem. Mater. 18, 5080 (2006).Google Scholar
20.Her, H.-J., Kim, J.-M., Kang, C.J., and Kim, Y.-S.: Hybrid photovoltaic cell with well-ordered nanoporous titania-P3HT by nanoimprinting lithography. J. Phys. Chem. Solids 69, 1301 (2008).CrossRefGoogle Scholar
21.Rattanavoravipa, T., Sagawa, T., and Yoshikawa, S.: Photovoltaic performance of hybrid solar cell with TiO2 nanotubes arrays fabricated through liquid deposition using ZnO template. Sol. Energy Mater. Sol. Cells 92, 1445 (2008).Google Scholar
22.Ravirajan, P., Bradley, D.D.C., Nelson, J., Haque, S.A., Durrant, J.R., Smit, H.J.P., and Kroon, J.M.: Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector. Appl. Phys. Lett. 86, 143101 (2005).Google Scholar
23.Kuwabara, T., Sugiyama, H., Yamaguchi, T., and Takahashi, K.: Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode. Thin Solid Films 517, 3766 (2009).CrossRefGoogle Scholar
24.Yodyingyong, S., Zhou, X., Zhang, Q., Triampo, D., Xi, J., Park, K., Limketkai, B., and Cao, G.: Enhanced photovoltaic performance of nanostructured hybrid solar cell using highly oriented TiO2 nanotubes. J. Phys. Chem. C 114, 21851 (2010).Google Scholar