Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T00:52:53.376Z Has data issue: false hasContentIssue false

Electrospun carbon nanofiber-supported Pt–Pd alloy composites for oxygen reduction

Published online by Cambridge University Press:  31 January 2011

Xiangwu Zhang*
Affiliation:
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Carbon nanofiber-supported Pt–Pd alloy composites were prepared by co-electrodepositing Pt–Pd alloy nanoparticles directly onto electrospun carbon nanofibers. The morphology and size of Pt–Pd alloy nanoparticles were controlled by the surface treatment of carbon nanofibers and the electrodeposition duration time. Scanning electron microscopy/energy dispersive spectrometer (SEM)/(EDS) and x-ray photoelectron spectroscopy (XPS) were used to study the composition of Pt–Pd alloy on the composites, and the co-electrodeposition mechanism of Pt–Pd alloy was investigated. The resultant Pt–Pd/carbon nanofiber composites were characterized by running cyclic voltammograms in oxygen-saturated 0.1 M HClO4 at 25 °C to study their electrocatalytic ability to reduce oxygen. Results show that Pt–Pd/carbon nanofiber composites possess good performance in the electrocatalytic reduction of oxygen. Among all Pt–Pd/carbon nanofibers prepared, the nanofiber composite with a Pt–Pd loading of 0.90 mg/cm2 has the highest electrocatalytic activity by catalyst mass.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cao, L., Scheiba, F., Roth, C., Schweiger, F., Cremers, C., Stimming, U., Fuess, H., Chen, L.Q., Zhu, W.T., Qiu, X.P.Novel nanocomposite Pt/RuO2 center dot xH(2)O/carbon nanotube catalysts for direct methanol fuel cells. Angew. Chem. Int. Ed. 45, 5315 (2006)CrossRefGoogle Scholar
2.Luo, J., Wang, L., Mott, D., Njoki, P.N., Lin, Y., He, T., Xu, Z., Wanjana, B.N., Lim, I.I.S., Zhong, C.J.Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Adv. Mater. 20, 4342 (2008)CrossRefGoogle Scholar
3.Saha, M.S., Li, R.Y., Sun, X.L.Composite of Pt–Ru supported SnO2 nanowires grown on carbon paper for electrocatalytic oxidation of methanol. Electrochem. Commun. 9, 2229 (2007)CrossRefGoogle Scholar
4.Wen, Z.H., Liu, J., Li, J.H.Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater. 20, 743 (2008)CrossRefGoogle Scholar
5.Yu, R.Q., Chen, L.W., Liu, Q.P., Lin, J.Y., Tan, K.L., Ng, S.C., Chan, H.S.O., Xu, G.Q., Hor, T.S.A.Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater. 10, 718 (1998)CrossRefGoogle Scholar
6.Carrette, L., Friedrich, K.A., Stimming, U.Fuel cells—Fundamentals and applications. Fuel Cells (Weinh.) 1, 5 (2001)3.0.CO;2-G>CrossRefGoogle Scholar
7.Peled, E., Duvdevani, T., Aharon, A., Melman, A.New fuels as alternatives to methanol for direct oxidation fuel cells. Electrochem. Solid-State Lett. 4, A38 (2001)CrossRefGoogle Scholar
8.Prakash, G.K.S.Low crossover membrane for liquid feed direct oxidation methanol fuel cells. Abstr. Paper Am. Chem. Soc. 226, U524 (2003)Google Scholar
9.Vilar, E., Dougal, R.A.Study of pulsed-current loading of direct methanol fuel cells using a new time-domain model based on bi-functional methanol oxidation kinetics. J. Power Sources 169, 276 (2007)CrossRefGoogle Scholar
10.Wang, W.M., Zheng, D., Du, C., Zou, Z.Q., Zhang, X.G., Xia, B.J., Yang, H., Akins, D.L.Carbon-supported Pd–Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. J. Power Sources 167, 243 (2007)CrossRefGoogle Scholar
11.Wasmus, S., Kuver, A.Methanol oxidation and direct methanol fuel cells: A selective review. J. Electroanal. Chem. 461, 14 (1999)CrossRefGoogle Scholar
12.Norskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T., Jonsson, H.Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886 (2004)CrossRefGoogle Scholar
13.Min, M.K., Cho, J.H., Cho, K.W., Kim, H.Particle size and alloying effects of Pt-based alloy catalysts for fuel-cell applications. Electrochim. Acta 45, 4211 (2000)CrossRefGoogle Scholar
14.Mukerjee, S., Srinivasan, S., Soriaga, M.P., Mcbreen, J.Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction—An in situ XANES and EXAFS investigation. J. Electrochem. Soc. 142, 1409 (1995)CrossRefGoogle Scholar
15.Mukerjee, S., Srinivasan, S., Soriaga, M.P., Mcbreen, J.Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction—XRD, XAS, and electrochemical studies. J. Phys. Chem. 99, 4577 (1995)CrossRefGoogle Scholar
16.Xu, Y., Ruban, A.V., Mavrikakis, M.Adsorption and dissociation of O2 on Pt–Co and Pt–Fe alloys. J. Am. Chem. Soc. 126, 4717 (2004)CrossRefGoogle ScholarPubMed
17.Li, X.W., Zhu, Y., Zou, Z.Q., Zhao, M.Y., Li, Z.L., Zhou, Q., Akins, D.L., Yang, H.Simple complexing-reduction synthesis of Pd–Pt/C alloy electrocatalysts for the oxygen reduction reaction. J. Electrochem. Soc. 156, B1107 (2009)CrossRefGoogle Scholar
18.Lopes, T., Antolini, E., Gonzalez, E.R.Carbon supported Pt–Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells. Int. J. Hydrogen Energy 33, 5563 (2008)CrossRefGoogle Scholar
19.Morales-Acosta, D., Arriaga, L.G., Alvarez-Contreras, L., Luna, S.F., Varela, F.J.R.Evaluation of Pt40Pd60/MWCNT electrocatalyst as ethylene glycol-tolerant oxygen reduction cathodes. Electrochem. Commun. 11, 1414 (2009)CrossRefGoogle Scholar
20.Outiki, O., Lamypitara, E., Barbier, J.Platinum-palladium catalysts for fuel-cell oxygen electrodes. React. Kinet. Catal. Lett. 23, 213 (1983)CrossRefGoogle Scholar
21.Wang, W.M., Huang, Q.H., Liu, J.Y., Zou, Z.Q., Li, Z.L., Yang, H.One-step synthesis of carbon-supported Pd-Pt alloy electrocatalysts for methanol tolerant oxygen reduction. Electrochem. Commun. 10, 1396 (2008)CrossRefGoogle Scholar
22.Jiang, L.H., Hsu, A., Chu, D., Chen, R.R.Oxygen reduction on carbon supported Pt and PtRu catalysts in alkaline solutions. J. Electroanal. Chem. 629, 87 (2009)CrossRefGoogle Scholar
23.Liu, H.S., Song, C.J., Zhang, L., Zhang, J.J., Wang, H.J., Wilkinson, D.P.A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155, 95 (2006)CrossRefGoogle Scholar
24.Arico, A.S., Creti, P., Giordano, N., Antonucci, V., Antonucci, P.L., Chuvilin, A.Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt–Ru–Sn–W/C anode. J. Appl. Electrochem. 26, 959 (1996)CrossRefGoogle Scholar
25.Chen, J.H., Li, W.Z., Wang, D.Z., Yang, S.X., Wen, J.G., Ren, Z.F.Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 40, 1193 (2002)CrossRefGoogle Scholar
26.Tang, H., Chen, J.H., Nie, L.H., Liu, D.Y., Deng, W., Kuang, Y.F., Yao, S.Z.High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs). J. Colloid Interface Sci. 269, 26 (2004)CrossRefGoogle ScholarPubMed
27.Tsai, M.C., Yeh, T.K., Tsai, C.H.An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation. Electrochem. Commun. 8, 1445 (2006)CrossRefGoogle Scholar
28.Kim, C., Yang, K.S.Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl. Phys. Lett. 83, 1216 (2003)CrossRefGoogle Scholar
29.Kim, C., Yang, K.S., Kojima, M., Yoshida, K., Kim, Y.J., Kim, Y.A., Endo, M.Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv. Funct. Mater. 16, 2393 (2006)CrossRefGoogle Scholar
30.Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H.H., Yang, G.L., Li, C., Willis, P.Electrospinning of continuons carbon nanotube-filled nanofiber yarns. Adv. Mater. 15, 1161 (2003)CrossRefGoogle Scholar
31.Guha, A.Platinum/carbon nanofiber electrodes for polymer electrolyte membrane (PEM) fuel cells. Abstr. Paper Am. Chem. Soc. 228, U462 (2004)Google Scholar
32.Li, Z.Z., Cui, X.L., Zhang, X.S., Wang, Q.F., Shao, Y.Y., Lin, Y.H.Pt/carbon nanofiber nanocomposites as electrocatalysts for direct methanol fuel cells: Prominent effects of carbon nanofiber nanostructures. J. Nanosci. Nanotechnol. 9, 2316 (2009)CrossRefGoogle ScholarPubMed
33.Wallnofer, E., Perchthaler, M., Hacker, V., Squadrito, G.Optimisation of carbon nanofiber based electrodes for polymer electrolyte membrane fuel cells prepared by a sedimentation method. J. Power Sources 188, 192 (2009)CrossRefGoogle Scholar
34.Lin, Z., Ji, L.W., Zhang, X.W.Electrodeposition of platinum nanoparticles onto carbon nanofibers for electrocatalytic oxidation of methanol. Mater. Lett. 63, 2115 (2009)CrossRefGoogle Scholar
35.Rasheed, A., Howe, J.Y., Dadmun, M.D., Britt, P.F.The efficiency of the oxidation of carbon nanofibers with various oxidizing agents. Carbon 45, 1072 (2007)CrossRefGoogle Scholar
36.Gloaguen, F., Leger, J.M., Lamy, C., Marmanna, A., Stimming, U., Vogela, R.Platinum electrodeposition on graphite: Electrochemical study and STM imaging. Electrochem. Acta 44, 1805 (1999)CrossRefGoogle Scholar
37.Becerik, I., Suzer, S., Kadirgan, F.Platinum-palladium loaded polypyrrole film electrodes for the electrooxidation of D-glucose in neutral media. J. Electroanal. Chem. 476, 171 (1999)CrossRefGoogle Scholar
38.Li, F.L., Zhang, B.L., Dong, S.J., Wang, E.K.A novel method of electrodepositing highly dispersed nano palladium particles on glassy carbon electrode. Electrochim. Acta 42, 2563 (1997)CrossRefGoogle Scholar
39.Budevski, E., Staikov, G., Lorenz, W.J.Electrochemical Phase Formation and Growth (Wiley-VCH, Weinheim, NY 1996)CrossRefGoogle Scholar