Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T03:04:03.107Z Has data issue: false hasContentIssue false

Electronmicroscopical Study of the Formation of Iron Carbide Phases After High-fluence Carbon Ion Implantation into Iron at Low Temperatures

Published online by Cambridge University Press:  31 January 2011

C Hammerl*
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
A. Königer
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
B. Rauschenbach
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
*
a)Address correspondence to this author. e-mail: [email protected]
Get access

Abstract

Carbon ions were implanted with energies between 50 and 150 keV into thin iron layers at temperatures of –10 °C and –70 °C. Formation of iron carbide phases was studied as a function of fluence, which was varied from 1.2 × 1017 C+-ions/cm2 up to 1.4 × 1018 C+-ions/cm2. The sequence of phase transformation during subsequent annealing to temperatures of up to 450 °C was also investigated. Detailed analysis of structure and morphology was done by cross-sectional transmission electron microscopy and electron diffraction experiments. The existence of metastable iron carbide phases, θ-Fe3C, Χ-Fe5C2, η-Fe2C, and also the amorphous phase Fe(C), after high-fluence carbon ion implantation and the transformation of the formed metastable phases by subsequent annealing into the θ-Fe3C phase are demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Iwaki, M., Crit. Rev. in Solid State Mater. Sci. 15, 473 (1989).CrossRefGoogle Scholar
2.Was, G. S., Progr. Surf. Sci. 32, 211 (1989).CrossRefGoogle Scholar
3.Marest, G., Ion Implantation, (edited by Wöhlbier, F. H.) (Trans-Tech. Publ., Aedermannsdorf, Germany, 1988), and references therein.Google Scholar
4.Terwagne, G., Van Tendeloo, G., and Donnelly, S. E., J. Appl. Phys. 65, 4225 (1989).CrossRefGoogle Scholar
5.Rauschenbach, B., Nucl. Instrum. Methods B 80/81, 1409 (1993).CrossRefGoogle Scholar
6.Wie, R., Wilbur, P. J., Ozturk, O., Williamson, D. L., Metin, E., and Ivanov, I., Nucl. Instrum. Methods B (IBMM92).Google Scholar
7.Pogrebnjak, A. D., Bakharev, O. G., Martynenko, V. A., Rudenko, V. A., Brusa, R., Zecca, A., Oeschsner, R., Ryssel, H., Tikhomirov, I. A., and Ryabchikov, A. I., Nucl. Instrum. Methods B 94, 81 (1994).CrossRefGoogle Scholar
8.Jack, D. H. and Jack, K. H., Mater. Sci. Engng. 11, 1 (1973).CrossRefGoogle Scholar
9.Jack, K. H. and Wild, S., Nature (London) 212, 248 (1966).CrossRefGoogle Scholar
10.Drako, V. M. and Gumanski, G. M., Rad. Eff. 66, 101 (1982).CrossRefGoogle Scholar
11.Follstaedt, D. M., Nucl. Instrum. Methods B 7/8, 11 (1985).CrossRefGoogle Scholar
12.Liu, B. X., Wang, J., Cheng, X. Y., and Fang, Z. Z., Phys. Status Solidi (a) 128, K 71 (1991).Google Scholar
13.Sekiguchi, A., Fujihana, T., Yuasa, M., Sekine, I., Akashi, K., Takahashi, K., and Iwaki, M., Surf. Coat. Technol. 51, 13 (1992).CrossRefGoogle Scholar
14.Perez-Martin, A. M. C., Mater. Sci. Engng. B 19, 281 (1993).CrossRefGoogle Scholar
15.Königer, A., Hammerl, C., Zeitler, M., and Rauschenbach, B., Phys. Rev. B 55, 8143 (1997).CrossRefGoogle Scholar
16.Königer, A., Hammerl, C., Wenzel, A., Stritzker, B., and Rauschenbach, B., Nucl. Instrum. Methods B 127/128, 137140 (1997).CrossRefGoogle Scholar
17.Ruhl, R. C. and Cohen, M., Trans. AIME 245, 241 (1969).Google Scholar
18.Williamson, D. L., Nakazawa, K., and Krauss, G., Met. Trans. 10A, 1351 (1979).CrossRefGoogle Scholar
19.Kunze, J., Nitrogen and Carbon in Iron and Steel (Akademie-Verlag, Berlin, 1990).Google Scholar
20.Eckstein, W., Computer Simulation of Ion-Solid Interactions (Springer-Verlag, Berlin, 1991).CrossRefGoogle Scholar
21.Königer, A., Wenzel, A., Zeitler, M., Gerlach, J. W., Hammerl, C., Assmann, W., Stritzker, B., and Rauschenbach, B., Proc. 5th Europ. Conf. Application of Accelerators in Research and Technol., Eindhoven 1997, Nucl. Instrum. Methods B. 139 (1998).CrossRefGoogle Scholar
22.Fasiska, E. J. and Jeffrey, G. A., Acta Crystallogr. 19, 463 (1965).CrossRefGoogle Scholar
23.Drako, V. M. and Gumanskij, G. A., Radat. Eff. 66, 101 (1982).CrossRefGoogle Scholar
24.Rauschenbach, B. and Hohmuth, K., Phys. Status Solidi (a) 72, 667 (1982).CrossRefGoogle Scholar