Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T14:10:14.775Z Has data issue: false hasContentIssue false

Electronic transport through crossed conducting polymer nanowires

Published online by Cambridge University Press:  31 January 2011

Yun-Ze Long*
Affiliation:
College of Physics Science, Qingdao University, Qingdao 266071, People’s Republic of China
Jean-Luc Duvail
Affiliation:
Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, 44322 Nantes, CNRS, France
Meng-Meng Li
Affiliation:
College of Physics Science, Qingdao University, Qingdao 266071, People’s Republic of China
Chang-Zhi Gu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In order to study the electronic properties of conjugated polymer nanowire junctions, we have fabricated two devices consisting of two crossed poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires with platinum microleads attached to each end of each nanowire. We find that the junction resistance of the crossed nanowires is much larger than the intrinsic resistance of the individual PEDOT nanowire, and increases with decreasing temperature, which can be described by a thermal fluctuation-induced tunneling conduction model. In addition, the crossed junctions show linear current-voltage characteristics at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aleshin, A.N.: Polymer nanofibers and nanotubes: Charge transport and device applications. Adv. Mater. 18, 17 (2006).Google Scholar
2.Duvail, J.L., Long, Y.Z., Cuenot, S., Chen, Z.J., and Gu, C.Z.: Tuning electrical properties of conjugated polymer nanowires with the diameter. Appl. Phys. Lett. 90, 102114 (2007).Google Scholar
3.Long, Y.Z., Zhang, L.J., Chen, Z.J., Huang, K., Yang, Y.S., Xiao, H.M., Wan, M.X., Jin, A.Z., and Gu, C.Z.: Electronic transport in single polyaniline and polypyrrole microtubes. Phys. Rev. B 71, 165412 (2005).Google Scholar
4.Pinto, N.J., Johnson, A.T., MacDiarmid, A.G., Mueller, C.H., Theofylaktos, N., Robinson, D.C., and Miranda, F.A.: Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl. Phys. Lett. 83, 4244 (2003).Google Scholar
5.Liu, L., Zhao, Y., Jia, N., Zhou, Q., Zhao, C., Yan, M., and Jiang, Z.: Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices. Thin Solid Films 503, 241 (2006).Google Scholar
6.Yun, M., Myung, N.V., Vasquez, R.P., Lee, C., Menke, E., and Penner, R.M.: Electrochemically grown wires for individually addressable sensor arrays. Nano Lett. 4, 419 (2004).Google Scholar
7.Liu, H., Kameoka, J., Czaplewski, D.A., and Craighead, H.G.: Polymeric nanowire chemical sensor. Nano Lett. 4, 671 (2004).Google Scholar
8.Long, Y.Z., Chen, Z.J., Shen, J.Y., Zhang, Z.M., Zhang, L.J., Huang, K., Wan, M.X., Jin, A.Z., Gu, C.Z., and Duvail, J.L.: Magnetoresistance studies of polymer nanotube/wire pellets and single polymer. Nanotechnology 17, 5903 (2006).CrossRefGoogle Scholar
9.Wan, M.X.: A template-free method towards conducting polymer nanostructures. Adv. Mater. 20, 2926 (2008).Google Scholar
10.Long, Y.Z., Zhang, L.J., Ma, Y.J., Chen, Z.J., Wang, N.L., Zhang, Z., and Wan, M.X.: Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method. Macromol. Rapid Commun. 24, 938 (2003).Google Scholar
11.Fuhrer, M.S., Lim, A.K.L., Shih, L., Varadarajan, U., Zettl, A., and McEuen, P.L.: Transport through crossed nanotubes. Physica E 6, 868 (2000).Google Scholar
12.Satishkumar, B.C., Thomas, P.J., Govindaraj, A., and Rao, C.N.R.: Y-junction carbon nanotubes. Appl. Phys. Lett. 77, 2530 (2000).Google Scholar
13.Papadopoulos, C., Yin, A.J., and Xu, J.M.: Temperature-dependent studies of Y-junction carbon nanotube electronic transport. Appl. Phys. Lett. 85, 1769 (2004).Google Scholar
14.Kim, B.H., Kim, M.S., Park, K.T., Lee, J.K., Park, D.H., Joo, J., Yu, S.G., and Lee, S.H.: Characteristics and field emission of conducting poly (3,4-ethylenedioxythiophene) nanowires. Appl. Phys. Lett. 83, 539 (2003).CrossRefGoogle Scholar
15.Han, M.G. and Foulger, S.H.: 1-Dimensional structures of poly (3,4-ethylene-dioxythiophene) (PEDOT): A chemical route to tubes, rods, thimbles, and belts. Chem. Commun. 3092 (2005).CrossRefGoogle Scholar
16.Zhang, X., Lee, J.S., Lee, G.S., Cha, D.K., Kim, M.J., Yang, D.J., and Manohar, S.K.: Chemical synthesis of PEDOT nanotubes. Macromolecules 39, 470 (2006).CrossRefGoogle Scholar
17.Samitsu, S., Shimonura, T., Ito, K., Fujimori, M., Heike, S., and Hashizume, T.: Conductivity measurements of individual poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) nanowires on nanoelectrodes using manipulation with an atomic force microscope. Appl. Phys. Lett. 86, 233103 (2005).Google Scholar
18.Long, Y.Z., Duvail, J.L., Chen, Z.J., Jin, A.Z., and Gu, C.Z.: Electrical conductivity and current-voltage characteristics of individual conducting polymer PEDOT nanowires. Chin. Phys. Lett. 25, 3474 (2008).Google Scholar
19.Duvail, J.L., P. Rétho, Fernandez, V., Louarn, G., Molinie, P., and Chauvet, O.: Effects of the confined synthesis on conjugated polymer transport properties. J. Phys. Chem. B 108, 18552 (2004).CrossRefGoogle Scholar
20.Duvail, J.L., Long, Y., P. Rétho, Louarn, G., Dauginet De Pra, L., and Demoustier-Champagne, S.: Enhanced electroactivity and electrochromism in PEDOT nanowires. Mol. Cryst. Liq. Cryst. 485, 87 (2008).CrossRefGoogle Scholar
21.Marzi, G.D., Iacopino, D., Quinn, A.J., and Redmond, G.: Probing intrinsic transport properties of single metal nanowires: Directwrite contact formation using a focused ion beam. J. Appl. Phys. 96, 3458 (2004).Google Scholar
22.Long, Y.Z., Duvail, J.L., Li, M.M., Yin, H.X., and Gu, C.Z.: Electrical conductivity studies on individual conjugated polymer nanowires: Two-probe and four-probe results. (unpublished).Google Scholar
23.Sheng, P.: Fluctuation-induced tunneling conduction in disordered materials. Phys. Rev. B 21, 2180 (1980).Google Scholar
24.Holland, E.R., Pomfret, S.J., Adams, P.N., and Monkman, A.P.: Conductivity studies of polyaniline doped with CSA. J. Phys. Condens. Matter 8, 2991 (1996).CrossRefGoogle Scholar
25.Lin, Y.H., Chiu, S.P., and Lin, J.J.: Thermal fluctuation-induced tunneling conduction through metal nanowire contacts. Nanotechnology 19, 365201 (2008).CrossRefGoogle ScholarPubMed
26.Long, Y.Z., Luo, J.L., Xu, J., Chen, Z.J., Zhang, L.J., Li, J.C., and Wan, M.X.: Specific heat and magnetic susceptibility of polyaniline nanotubes: Inhomogeneous disorder. J. Phys. Condens. Matter 16, 1123 (2004).Google Scholar
27.Aleshin, A.N., Lee, H.J., Jhang, S.H., Kim, H.S., Akagi, K., and Park, Y.W.: Coulomb-blockade transport in quasi-one-dimensional polymer nanofibers. Phys. Rev. B 72, 153202 (2005).Google Scholar