Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T17:43:23.654Z Has data issue: false hasContentIssue false

Electronic structure and chemical bonding of α- and β-Ta4AlC3 phases: Full-potential calculation

Published online by Cambridge University Press:  31 January 2011

Wei Lu*
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People’s Republic of China
Xiaohui Deng
Affiliation:
Department of Physics, Hengyang Normal University, Hengyang 421008, People’s Republic of China
Hai Wang
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People’s Republic of China
Haitao Huang
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People’s Republic of China
Lianlong He
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

First-principles total-energy and heat of formation calculations on α and β polymorphs of Ta4AlC3 have been made with a full-potential electronic structure program with the generalized gradient approximation, which shows that α phase is more stable than β phase. The charge transfer and chemical bonding of the two phases were investigated quantitatively by using Bader’s quantum theory of atoms in molecules (AIM). The results show that the bonding between Ta1-C2 is stronger in α phase than β phase, which leads to the stability of α phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Barsoum, M.W.El-Raghy, T.: Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Chem. Soc. 79, 1953 1996Google Scholar
2Barsoum, M.W.: The MN +1AXN phases: A new class of solids. Prog. Solid State Chem. 28, 201 2000CrossRefGoogle Scholar
3Yu, R., Zhan, Q., He, L.L., Zhou, Y.C.Ye, H.Q.: Polymorphism of Ti3SiC2. J. Mater. Res. 17, 948 2002CrossRefGoogle Scholar
4Wang, X.H.Zhou, Y.C.: Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater. 50, 3141 2002CrossRefGoogle Scholar
5Ma, X.L., Zhu, Y.L., Wang, X.H.Zhou, Y.C.: Microstructural characterization of bulk Ti3AlC2 ceramic. Philos. Mag. 84, 2969 2004CrossRefGoogle Scholar
6Yu, R., He, L.L., Zhou, Y.C.Ye, H.Q.: Si-induced twinning of TiC and formation of Ti3SiC2 platelets. Acta Mater. 50, 4127 2002CrossRefGoogle Scholar
7Arunajatesan, S.Carim, A.H.: Synthesis of titanium-silicon carbide. J. Am. Ceram. Soc. 78, 667 1995CrossRefGoogle Scholar
8El-Raghy, T., Zavaliangos, A., Barsoum, M.W.Kalidinidi, S.: Damage mechanisms around hardness indentations in Ti3SiC2. J. Am. Chem. Soc. 80, 513 1997Google Scholar
9Barsoum, M.W., Zhen, T., Kalidindi, S., Radovic, M.Murugaiah, A.: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1GPa. Nat. Mater. 2, 107 2003CrossRefGoogle Scholar
10Barsoum, M.W., Radovic, M., Zhen, T., Finkel, P.Kalidindi, S.R.: Dynamic elastic hysteretic solids and dislocations. Phys. Rev. Lett. 94, 085501 2005CrossRefGoogle ScholarPubMed
11Procopio, A.T., Barsoum, M.W.El-Raghy, T.: Characterization of Ti4AlN3. Metall. Mater. Trans. A 31, 333 2000Google Scholar
12Rawn, C.J., Barsoum, M.W., El-Raghy, T., Procopio, A.T., Hoffmann, C.M.Hubbard, C.R.: Structure of Ti4AlN3— A layered Mn +1AXn nitride. Mater. Res. Bull. 35, 1785 2000CrossRefGoogle Scholar
13Palmquist, J.P., El-Raghy, T., Howing, J., Wilhemsson, O.Sundberg, M.: Crystal structure and TEM characterization of Ta4AlC3 in Proceedings of the 30th International Conference on Advanced Ceramics & Composites Abstract #ICACC-S1-184-2006, Jan. 22–27 (Cocoa Beach, FL, 2006),Google Scholar
14Manoun, B., Saxena, S.K., El-Raghy, T.Barsoum, M.W.: High-pressure x-ray diffraction study of Ta4AlC3. Appl. Phys. Lett. 88, 201902 2006CrossRefGoogle Scholar
15Etzkorn, J., Ade, M.Hillebrecht, H.: Ta3AlC2 and Ta4AlC3—Single-crystal investigations of two new ternary carbides of Tantalum synthesized by the melten metal technique. Inorg. Chem. 46, 1410 2007CrossRefGoogle Scholar
16Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S.Wang, J.Y.: Structural characterization of a new layered-ternary Ta4AlC3 ceramic. J. Mater. Res. 21, 2587 2006CrossRefGoogle Scholar
17Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S.Wang, J.Y.: Erratum: “Structural characterization of a new layered-ternary Ta4AlC3 ceramic.” J. Mater. Res. 22, 816 2007CrossRefGoogle Scholar
18Eklund, P., Palmquist, J-P., Höwing, J., Trinh, D.H., El-Raghy, T., Högberg, H.Hultman, L.: Ta4AlC3: Phase determination, polymorphism and deformation. Acta Mater. 55, 4723 2007CrossRefGoogle Scholar
19Bader, R.F.W., Nguyen-Dang, T.T.Tal, Y.: A topological theory of molecular structure. Rep. Prog. Phys. 44, 894 1981CrossRefGoogle Scholar
20Bader, R.F.W.: A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893 1991CrossRefGoogle Scholar
21Bader, R.F.W.: Atoms in Molecules: A Quantum Theory Oxford University Press New York 1990CrossRefGoogle Scholar
22Hohenberg, P.Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 1964CrossRefGoogle Scholar
23Kohn, W.Sham, L.J.: self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 1965CrossRefGoogle Scholar
24Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D.Lutiz, J.: WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz and TU Wien (Austria, 2001, ISBN 3-9501031-1-2),Google Scholar
25Perdew, J.P., Burke, K.Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 1996CrossRefGoogle ScholarPubMed
26Blöchl, P., Jepsen, O.Andersen, O.K.: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 1994CrossRefGoogle ScholarPubMed
27Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S.Wang, J.Y.: Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides. J. Am. Ceram. Soc. 89, 3765 2006CrossRefGoogle Scholar
28Yu, R.: Investigations of microstructures and electronic structures of Ti3SiC2 and TiAl. Ph.D. Dissertation, Institute of Metal Research, Chinese Academy of Sciences, 2002,Google Scholar
29Popelier, P.L.A.: Atoms in Molecules: An Introduction Pearson Education Harlow 2000Google Scholar
30Shu, H.B., Zhou, G.C., Zhong, X.L., Sun, L.Z., Wang, J.B., Chen, X.S.Zhou, Y.C.: Effects of lattice strain and ion displacement on the bonding mechanism of the ferroelectric perovskite material BaTiO3: First-principles study. J. Phys.: Condens. Mater 19, 276213 2007Google Scholar
31Madsen, G.K.H., Gatti, C., Iversen, B.B., Damjanovic, L.J., Stucky, G.D.Srdanov, V.I.: F center in sodium electrosodalite as a physical manifestation of a non-nuclear attractor in the electron density. Phys. Rev. B 59, 12359 1999CrossRefGoogle Scholar
32Yu, R., Zhang, X.F., He, L.L.Ye, H.Q.: Topology of charge density and elastic anisotropy of Ti3SiC2 polymorphs. J. Mater. Res. 20, 1180 2005CrossRefGoogle Scholar
33Laskowski, R., Blaha, P.Schwarz, K.: Charge distribution and chemical bonding in Cu2O. Phys. Rev. B 67, 075102 2003CrossRefGoogle Scholar
34Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A 30, 244 1944CrossRefGoogle ScholarPubMed
35Sun, Z., Zhou, J., Music, D., Ahuja, R.Schneider, J.M.: Phase stability of Ti3SiC2 at elevated temperatures. Scr. Mater. 54, 105 2006CrossRefGoogle Scholar
36Music, D., Emmerlich, J.Schneider, J.M.: Phase stability and elastic properties of Tan +1AlCn (n = 1–3) at high pressure and elevated temperature. J. Phys.: Condens. Mater 19, 136207 2007Google Scholar
37Du, Y.L., Sun, Z.M., Hashimoto, H.Tian, W.B.: First-principle study of polymorphism in Ta4AlC3. Solid State Commun. 145, 461 2008CrossRefGoogle Scholar