Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T19:27:43.909Z Has data issue: false hasContentIssue false

Electron beam-induced surface modification and nano-engineering of carbon nanotubes: Single-walled and multiwalled

Published online by Cambridge University Press:  03 March 2011

S. Gupta*
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, Missouri 65897; and Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211
R.J. Patel
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, Missouri 65897
R.E. Giedd
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, Missouri 65897
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Influence of low and medium energy electron beam (E-beam) irradiation on the single-walled (SW) and multiwalled (MW) carbon nanotube films grown by microwave chemical vapor deposition are investigated. These films were subjected to electron beam energy of 50 keV from scanning electron microscope for 2.5, 5.5, 8.0, and 15 h and 100, 200, and 300 keV from transmission electron microscope electron gun for a few minutes to approximately 2 h continuously. To assess the surface modifications/structural degradation, the films were analyzed prior to and post-irradiation using x-ray diffraction and micro-Raman spectroscopy in addition to in situ monitoring by scanning and high-resolution transmission electron microscopy. A minimal increase in intertube or interplanar spacing (i.e., d002) for MW nanotubes ranging from 3.25–3.29 Å (∼3%) can be analogized to change in c-axis of graphite lattice due to thermal effects measured using x-ray diffraction. Resonance Raman spectroscopy revealed that irradiation generated defects in the lattice evaluated through variation of: the intensity of radial breathing mode (RBM), intensity ratio of D to G band (ID/IG), position of D and G bands and their harmonics (D* and G*). The increase in the defect-induced D band intensity, quenching of RBM intensity, and only a slight increase in G band intensity are some of the implications. The MW nanotubes tend to reach a state of saturation for prolonged exposures, while SW transforming semiconducting to quasi-metallic character. Softening of the q = 0 selection rule is suggested as a possible way to explain these results. It is also suggestive that knock-on collision may not be the primary cause of structural degradation, rather a local gradual reorganization, i.e., sp2+δ ⇔ sp2+δ, sp2 C seems quite possible. Experiments showed that with extended exposures, both kinds of nanotubes displayed various local structural instabilities including pinching, graphitization/amorphization, and forming intra-molecular junction (IMJ) within the area of electron beam focus possibly through amorphous carbon aggregates. They also displayed curling and closure forming nano-ring and helix-like structures while mending their dangling bonds. High-resolution transmission electron microscopy electrons corroborated these conclusions. Manufacturing of nanoscale structures “nano-engineering” of carbon-based systems is tentatively ascribed to irradiation-induced solid-state phase transformation, in contrast to conventional nanotube synthesis from the gas phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes, (Academic Press, New York, 1996).Google Scholar
2.Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes, (Imperial College Press, London, 1998).CrossRefGoogle Scholar
3.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
4.Bethune, D.S., Klang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605 (1993).CrossRefGoogle Scholar
5.Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297, 787 (2002).CrossRefGoogle ScholarPubMed
6.Dekker, C.: Carbon nanotubes as molecular quantum wires. Phys. Today 52, 22 (1999).CrossRefGoogle Scholar
7.Harris, P.J.F.: Carbon Nanotubes and Related Structures, (Cambridge University Press, London, 1999).CrossRefGoogle Scholar
8.Fennimore, A.M., Yuzvinsky, T.D., Han, W., Fuhrer, M.S., Cummings, J., Zettl, A.: Rotational actuators based on carbon nanotubes. Nature 424, 408 (2003).CrossRefGoogle ScholarPubMed
9.Huang, W., Fernando, S., Allard, L.F., Sun, Y.P.: Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene glycol) in different functionalization reactions. Nano Lett. 3, 565 (2003).CrossRefGoogle Scholar
10.Gupta, S., Wang, Y.Y., Garguilo, J.M., Nemanich, R.J.: Imaging temperature-dependent field emission from carbon nanotube films: Single versus multiwalled. Appl. Phys. Lett. 86, 063109 (2005).CrossRefGoogle Scholar
11.Bonard, J.M., Dean, K.A., Coll, B.F., Klinke, C.: Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett. 89, 197602 (2002).CrossRefGoogle ScholarPubMed
12.Crespi, V.H., Chopra, N.G., Cohen, M.L., Zettl, A., Louie, S.G.: Anisotropic electron-beam damage and the collapse of carbon nanotubes. Phys. Rev. B 54, 5927 (1996).CrossRefGoogle ScholarPubMed
13.Chopra, N.G., Benedict, L.X., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A.: Fully collapsed carbon nanotubes. Nature 377, 135 (1995).CrossRefGoogle Scholar
14.Benedict, L.X., Crespi, V.H., Chopra, N.G., Cohen, M.L., Louie, S.G., Zettl, A. unpublished.Google Scholar
15.Banhart, F.: Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181 (1999).CrossRefGoogle Scholar
16.Kiang, C-H., Goddard, W.A., Beyers, R., Bethune, D.S.: Structural modification of single-layer carbon nanotubes with an electron beam. J. Phys. Chem. 100, 3749 (1996).CrossRefGoogle Scholar
17.Li, J., Banhart, F.: The engineering of hot carbon nanotubes with a focused electron beam. Nano Lett. 4, 1143 (2004).CrossRefGoogle Scholar
18.Doorn, S.K., O.’Connell, M.J., Zheng, L., Zhu, Y.T., Huang, S., Liu, J.: Raman spectral imaging of a carbon nanotube intramolecular junction. Phys. Rev. Lett. 94, 016802 (2005).CrossRefGoogle ScholarPubMed
19.Wilson, J.W., Cucinotta, F.A., Kim, M-H.Y., Schimmerling, W.Optimized shielding for space radiation protection, 1st International Workshop on Space Radiation Research and 11th Annual NASA Space Radiation Health Investigators' Workshop, Arona (Italy), May 27–31, 2000. Physica Medica, 27 (Supplement 1), 67 (2001).Google Scholar
20.Gupta, S., Patel, R.J., Smith, N.D. Advanced carbon-based material as space radiation shields, in Materials for Space Applications, edited by Chipara, M., Edwards, D.L., Benson, R.S., and Phillips, S. (Mater. Res. Soc. Symp. Proc. 851, Warrendale, PA, 2005), NN6.3.Google Scholar
21.Gupta, S., Weiss, B.L., Weiner, B.R., Pilione, L., Badzian, A., Morell, G.: Electron field emission properties of gamma irradiated microcrystalline diamond and nanocrystalline carbon thin films. J. Appl. Phys. 92, 3311 (2002).CrossRefGoogle Scholar
22.Ugarte, D.: Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707 (1992).CrossRefGoogle ScholarPubMed
23.Smith, B.W., Luzzi, D.E.: Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509 (2001).CrossRefGoogle Scholar
24.Ajayan, P.M., Ravikumar, V., Charlier, J-C.: Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Phys. Rev. Lett. 81, 1437 (1998).CrossRefGoogle Scholar
25.Yuzvinsky, T.D., Fennimore, A.M., Mickelson, W., Esquivias, C., Zettl, A.: Precision cutting of nanotubes with a low-energy electron beam. Appl. Phys. Lett. 86, 053109 (2005).CrossRefGoogle Scholar
26.Wang, Y.Y., Gupta, S., Nemanich, R.J.: Role of thin Fe catalyst in the synthesis of double- and single-wall carbon nanotubes via microwave chemical vapor deposition. Appl. Phys. Lett. 85, 2601 (2004).CrossRefGoogle Scholar
27.Wang, Y.Y., Gupta, S., Nemanich, R.J., Liu, Z.J., Qin, L.C.: Hollow to bamboolike internal structure transition observed in carbon nanotube films. J. Appl. Phys. 98, 014312 (2005).CrossRefGoogle Scholar
28.Gill, P.R., Murray, W., Wright, M.H. The Levenberg-Marquardt Method, Sect. 4.7.3, in Practical Optimization, (Academic Press, London, 1981), pp. 136137.Google Scholar
29.Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L., Goldberg, H.A.: Graphite Fibers and Filaments, Vol. 5, Springer Series in Materials Science, (Springer-Verlag, Berlin, 1998).Google Scholar
30.Journet, C., Maser, W.K., Bernier, P., Loiseau, A., de la Chapelle, M. Lamy, Lefrant, S., Deniard, P., Lee, R., Fischer, J.E.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756 (1997).CrossRefGoogle Scholar
31.Cullity, B.D., Stock, S.R., Stock, S.: Elements of X-Ray Diffraction (3e), (Addison-Wesley Publishing Co. Inc., San Diego, CA, 1978).Google Scholar
32.Krasheninnikov, A.V., Nordlund, K., Keinonen, J.: Production of defects in supported carbon nanotubes under ion irradiation. Phys. Rev. B 65, 165423 (2002).CrossRefGoogle Scholar
33.Krasheninnikov, A.V., Nordlund, K., Keinonen, J.: Ion-irradiation-induced welding of carbon nanotubes. Phys. Rev. B 66, 245403 (2002).CrossRefGoogle Scholar
34.Dresselhaus, M.S., Eklund, P.C.: Phonons in carbon nanotubes. Adv. Phys. 49, 705 (2000).CrossRefGoogle Scholar
35.Venkateswara, U.D., Rao, A.M., Richter, E., Menon, M., Rinzler, A., Smalley, R.E., Eklund, P.C.: Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure. Phys. Rev. B 59, 928 (1999).Google Scholar
36.Rao, A. M., Eklund, P. C., Bandow, S., Thess, A., Smalley, R. E.: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering Nature 388, 257 (1997).CrossRefGoogle Scholar
37.Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2001).CrossRefGoogle Scholar
38.Telling, R.H., Ewels, C.P., El-Barbary, A.A., Heggie, M.I.: Wigner defects bridge the graphite gap. Nat. Mater. 2, 333 (2003).CrossRefGoogle ScholarPubMed
39.Goldberg, D., Bando, Y., Kurashima, K., Sasaki, T.: Boron-doped carbon fullerenes and nanotubules formed through electron irradiation-induced solid-state phase transformation. Appl. Phys. Lett. 72, 2108 (1998).CrossRefGoogle Scholar
40.Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.S.: A defect-tolerant computer architecture: Opportunities for nanotechnology. Science 280, 1716 (1998).CrossRefGoogle Scholar
41.Fleetwood, D.M., Winokur, P.S., Sexton, F.W.: Radiation-hardened microelectronics for space applications. IEEE Trans. Nucl. Sci. 38, 129 (1994).Google Scholar
42.Wildoer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C.: Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59 (1998).CrossRefGoogle Scholar
43.Melechko, A.V., Merkulov, V.I., McKnight, T.E., Guillorn, M.A., Klein, K.L., Lowndes, D.H., Simpson, M.L.: Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. J. Appl. Phys. 97, 041301 (2005).CrossRefGoogle Scholar
44.Ugarte, D.: Formation mechanism of quasi-spherical carbon particles induced by electron bombardment. Chem. Phys. Lett. 207, 473 (1993).CrossRefGoogle Scholar
45.Chopra, N., Ross, F.M., Zettl, A.: Collapsing carbon nanotubes with an electron beam. Chem. Phys. Lett. 256, 241 (1996).CrossRefGoogle Scholar
46.Williams, D.B., Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science (Plenum, New York, 1996).CrossRefGoogle Scholar
47.Muto, S., Tanabe, T.: Damage process of electron irradiated graphite studied by transmission electron microscopy: I. High resolution observation of highly graphitized carbon fiber. Philos. Mag. A 76, 679 (1997).CrossRefGoogle Scholar
48.Monthioux, M., Smith, B.W., Burteaux, B., Claye, A., Fischer, J.E., Luzzi, D.E.: Sensitivity of single-wall carbon nanotubes to chemical processing: An electron microscopy investigation. Carbon 39, 1251 (2001).CrossRefGoogle Scholar
49.Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000).CrossRefGoogle ScholarPubMed
50.Banhart, F., Ajayan, P.M.: Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382, 433 (1996).CrossRefGoogle Scholar
51.Smith, B.W., Monthioux, M., Luzzi, D.E.: Encapsulated C60 in carbon nanotubes. Nature 396, 323 (1998).CrossRefGoogle Scholar
52.Mickelson, W., Aloni, S., Han, W-Q., Cumings, J., Zettl, A.: Packing C60 in boron nitride nanotubes. Science 300, 467 (2003).CrossRefGoogle ScholarPubMed
53.Maiti, A., Brabec, C.J., Bernholc, J.: Structure and energetics of single and multilayer fullerene cages. Phys. Rev. Lett. 70, 3023 (1993).CrossRefGoogle ScholarPubMed
54.Kis, A., Csányi, G., Salvetat, J-P., Lee, T-N., Couteau, E., Kulik, A. J., Benoit, W., Brugger, J., Forró, L.: Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3, 153 (2004).CrossRefGoogle ScholarPubMed
55.Urban, K., Seeger, A.: Radiation-induced diffusion of point-defects during low-temperature electron irradiation, Philos. Mag. 30, 1395 (1974).CrossRefGoogle Scholar
56.Allen, T. R., Was, G. S.: Sources of variability in the measurement of radiation induced segregation. J. Nucl. Mater. 278, 149 (2000).CrossRefGoogle Scholar
57.Sandler, J., Shaffer, M.S.P., Windle, A.H., Halsall, M.P., Montes-Morán, M.A., Cooper, C.A., Young, R.J.: Variations in the Raman peak shift as a function of hydrostatic pressure for various carbon nanostructures: A simple geometric effect. Phys. Rev. B. 67, 035417 (2003).CrossRefGoogle Scholar
58.Maultzsch, J., Reich, S., Thomsen, C., Webster, S., Czerw, R., Carroll, D.L., Vieira, S.M.C., Birkett, P.R., Rego, C.A.: Raman characterization of boron-doped multiwalled carbon nanotubes. Appl. Phys. Lett. 81, 2647 (2002).CrossRefGoogle Scholar
59.Lourie, O., Wagner, H.D.: Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J. Mater. Res. 13, 2418 (1998).CrossRefGoogle Scholar
60.Segal, B.M. Nantero Inc. Woburn, MA (www.nanotero.com).Google Scholar