Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:07:27.606Z Has data issue: false hasContentIssue false

Electrical characterization of BaTiO3 heteroepitaxial thin films by hydrothermal synthesis

Published online by Cambridge University Press:  31 January 2011

A. T. Chien
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106
X. Xu
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106
J. H. Kim
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106
J. Sachleben
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106
J. S. Speck
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106
F. F. Lange
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106
Get access

Abstract

The electrical properties of hydrothermally grown epitaxial pseudocubic BaTiO3 thin films formed on epitaxial electrode layers of SrRuO3 on SrTiO3 single crystal substrates have been evaluated by variable frequency dielectric testing. The initial as-synthesized BaTiO3 film displayed a dielectric constant of 450 with very high losses (tan δ ˜ ~ 100%) at 10 kHz due to OH and H2O, incorporated during growth, contributing to migration losses within the film. Improvements were seen with increasing postprocessing heat-treatment time and temperature with improved properties seen after a heat treatment at 300 °C for 24 h (ε ˜ ~ 200, tan δ ˜ ~ 8%). Relationships were established for dielectric constant and loss tangent with structural changes observed by Fourier transform infrared spectroscopy, thermal gravimetric analysis, nuclear magnetic resonance spectroscopy, and x-ray diffraction.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sheppard, L.M., Ceram. Bull. 71, 85 (1992).Google Scholar
2.Lange, F.F., Science 273, 903 (1996).CrossRefGoogle Scholar
3.Chien, A.T., Speck, J.S., Lange, F.F., Daykin, A., and Levi, C., J. Mater. Res. 10, 1784 (1995).CrossRefGoogle Scholar
4.Xu, W., Zheng, L., Xin, H., Lin, C., and Okuyama, M., J. Mater. Res. 11, 821 (1996).CrossRefGoogle Scholar
5.Chien, A.T., Speck, J.S., and Lange, F.F., J. Mater. Res. 12, 1176 (1997).CrossRefGoogle Scholar
6.Goh, G. and Lange, F.F. (unpublished).Google Scholar
7.Kasailas, D. and Lange, F.F. (unpublished).Google Scholar
8.Chien, A.T., Zhao, L., Colic, M., Speck, J.S., and Lange, F.F., J. Mater. Res. 13, 649 (1998).CrossRefGoogle Scholar
9.Izuha, M., Abe, K., and Fukushima, N., Jpn. J. Appl. Phys. 36, 5866 (1997).CrossRefGoogle Scholar
10.Kajiyoshi, K., Ishizawa, N., and Yoshimura, M., Jpn. J. Appl. Phys. 30, L120 (1991).CrossRefGoogle Scholar
11.Gong, J., Kawasaki, M., Fujito, K., Tanaka, U., Ishizawa, N., Yoshimoto, M., Koinuma, H., Kumagai, M., Hirai, K., and Horiguchi, K., Jpn. J. Appl. Phys. 32, L687 (1993).CrossRefGoogle Scholar
12.Chern, C., Zhao, Z., Luo, L., Lu, P., Li, Y., Norris, P., Kear, B., Cosandey, F., Maggiore, C., Gallois, B., and Wilkens, B., Appl. Phys. Lett. 60, 1144 (1992).CrossRefGoogle Scholar
13.Iijima, K., Terashima, T., Yamamoto, K., Hirata, K., and Bando, Y., Appl. Phys. Lett. 56, 527 (1990).CrossRefGoogle Scholar
14.Wills, L. and Amano, J., in Ferroelectric Thin Films IV, edited by Tuttle, B., Desu, S., Ramesh, R., and Shiosake, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 471.Google Scholar
15.Zhu, W., Sheikh, S., Akbar, A., Asiaie, R., and Dutta, P., Jpn. J. Appl. Phys. 36, 214 (1997).CrossRefGoogle Scholar
16.Fukai, K., Hidaka, K., Aoki, M., and Abe, K., Ceram. Int. 16, 285 (1990).CrossRefGoogle Scholar
17.Cho, C., Jang, M., Jeong, S., Lee, S., and Lim, B., Mater. Lett. 23, 203 (1995).CrossRefGoogle Scholar
18.Hennings, D. and Schreinemacher, S., J. Eur. Ceram. Soc. 9, 41 (1992).CrossRefGoogle Scholar
19.Noma, T., Wada, S., Yano, M., and Suzuki, T., J. Appl. Phys. 80, 5223 (1996).CrossRefGoogle Scholar
20.Vivekanandan, R., Philip, S., and Kutty, T., Mater. Res. Bull. 22, 99 (1986).CrossRefGoogle Scholar
21.Begg, B., Vance, E., and Nowotny, J., J. Am. Ceram. Soc. 77, 3186 (1994).CrossRefGoogle Scholar
22.Shi, E., Xia, C., Zhong, W., Wangm, B., and Guo, J., J. Am. Ceram. Soc. 80, 1567 (1997).CrossRefGoogle Scholar
23.Spieβ, H.W., Garrett, B.B., Sheline, R.K., and Rabideau, S.W., J. Chem. Phys. 51, 1201 (1969).Google Scholar
24.Waldstein, P., Rabideau, S.W., and Jackson, J.A., J. Chem. Phys. 41, 3407 (1964).CrossRefGoogle Scholar
25.Kobe, J.M., Gluszak, T.J., Dumesic, J.A., and Root, T.W., J. Phys. Chem. 99, 5485 (1995).CrossRefGoogle Scholar
26.Hench, L. and West, J., Principles of Electronic Ceramics (Wiley, New York, 1990).Google Scholar
27.Iwahara, H., Solid State Ionics 28–30, 573 (1988).CrossRefGoogle Scholar
28.Waser, R., J. Am. Ceram. Soc. 71, 58 (1988).CrossRefGoogle Scholar
29.Kapphan, S. and Weber, G., Ferroelectrics 37, 673 (1981).CrossRefGoogle Scholar
30.Kapphan, S., Koppitz, J., and Weber, G., Ferroelectrics 25, 585 (1980).CrossRefGoogle Scholar
31.Sata, N., Hiramoto, K., Ishigame, M., Hosoya, S., Niimura, N., and Shin, S., Phys. Rev. B 54, 15795 (1996).CrossRefGoogle Scholar
32.Yi, G., Block, B., and Wessels, B., Appl. Phys. Lett. 71, 327 (1997).CrossRefGoogle Scholar