Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T16:09:01.608Z Has data issue: false hasContentIssue false

Electric field nematic alignment of fluorohectorite clay particles in oligomeric matrices

Published online by Cambridge University Press:  10 May 2013

Zbigniew Rozynek*
Affiliation:
Department of Physics, NTNU, 7491 Trondheim, Norway
René C. Castberg
Affiliation:
Physics Department, University of Oslo, 0316, Oslo, Norway
Alexander Mikkelsen
Affiliation:
Department of Physics, NTNU, 7491 Trondheim, Norway
Jon Otto Fossum*
Affiliation:
Department of Physics, NTNU, 7491 Trondheim, Norway; and The Centre for Advanced Study (CAS), Norwegian Academy of Science and Letters, 0272, Oslo, Norway
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

We study the behavior of fluorohectorite synthetic clay particles dispersed in paraffin wax. We report wide-angle x-ray scattering related to electric-field-induced alignment of the embedded clay particles. The development of anisotropic arrangement of the particles is measured during melting and crystallization of the composites. The degree of anisotropy is quantified by fitting azimuthal changes of the clay diffraction peak intensity to the Maier-Saupe function. This parametric function is then used to extract both the full width at half maximum (FWHM) and the amplitude of the anisotropic scattering and eventually to estimate a nematic order parameter for this system. Finally, the time evolution of the one-to-zero and zero-to-one water layer transition in paraffin embedded fluorohectorite clay galleries is presented, and we demonstrate that such particles can be used as “meso-detectors” for monitoring the local water content in bulk carrier matrices, such as paraffin wax.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Walls, H.J., Riley, M.W., Singhal, R.R., Spontak, R.J., Fedkiw, P.S., and Khan, S.A.: Nanocomposite electrolytes with fumed silica and hectorite clay networks: Passive versus active fillers. Adv. Funct. Mater. 13, 710717 (2003).CrossRefGoogle Scholar
Kim, S.H., Eun-Ju, J., Jung, Y., Han, M., and Park, S.J.: Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials. Colloids. Surf., A 313, 216219 (2008).CrossRefGoogle Scholar
Ratna, D., Divekar, S., Samui, A.B., Chakraborty, B.C., and Banthia, A.K.: Poly(ethylene oxide)/clay nanocomposite: Thermomechanical properties and morphology. Polymer 47, 40684074 (2006).CrossRefGoogle Scholar
Yano, K., Usuki, A., Okada, A., Kurauchi, T., and Kamigaito, O.: Synthesis and properties of polyimide-clay hybrid. J. Polym. Sci., Part A: Polym. Chem. 31, 24932498 (1993).CrossRefGoogle Scholar
Okamoto, M., Nam, P.H., Maiti, P., Kotaka, T., Nakayama, T., Takada, M., Ohshima, M., Usuki, A., Hasegawa, N., and Okamoto, H.: Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano Lett. 1, 503505 (2011).CrossRefGoogle Scholar
He, X., Yang, J., Zhu, L., Wang, B., Sun, G., Lv, P., Phang, I.Y., and Liu, T.: Morphology and melt rheology of nylon 11/clay nanocomposites. Appl. Polym. Sci. 102, 542549 (2006).CrossRefGoogle Scholar
Hemmen, H., Ringdal, N.I., De Azevedo, E.N., Engelsberg, M., Hansen, E.L., Méheust, Y., Fossum, J.O., and Knudsen, K.D.: The isotropic-nematic interface in suspensions of Na-fluorohectorite synthetic clay. Langmuir 25, 1250712515 (2009).CrossRefGoogle ScholarPubMed
De Azevedo, E.N., Engelsberg, M., Fossum, J.O., and de Souza, R.E.: Anisotropic water diffusion in nematic self-assemblies of clay nanoplatelets suspended in water. Langmuir 23, 51005105 (2007).CrossRefGoogle ScholarPubMed
Fossum, J.O., Méheust, Y., Parmar, K.P.S., Knudsen, K.D., Måløy, K.J., and Fonseca, D.M.: Intercalation-enhanced electric polarization and chain formation of nano-layered particles. Europhys. Lett. 74, 438444 (2006).CrossRefGoogle Scholar
Huang, Y.P., Lee, M.J., Yang, M.K., and Chen, C.W.: Montmorillonite particle alignment and crystallization and ion-conducting behavior of montmorillonite/poly(ethylene oxide) nanocomposites. Appl. Clay Sci. 49, 163169 (2010).CrossRefGoogle Scholar
Rozynek, Z., Knudsen, K.D., Fossum, J.O., Méheust, Y., Wang, B., and Zhou, M.: Electric field induced structuring in clay–oil suspensions: New insights from WAXS, SEM, leak current, dielectric permittivity, and rheometry. J. Phys. Condens. Matter 22, 324104 (2010).CrossRefGoogle ScholarPubMed
Knudsen, K.D., Fossum, J.O., Helgesen, G., and Haakestad, M.W.: Small-angle neutron scattering from a nano-layered synthetic silicate. Physica B 352, 247258 (2004).CrossRefGoogle Scholar
Méheust, Y., Knudsen, K.D., and Fossum, J.O.: Inferring orientation distributions in anisotropic powders of nano-layered crystallites from a single two-dimensional WAXS image. J. Appl. Cryst. 39, 661670 (2006).CrossRefGoogle Scholar
Hemmen, H., Alme, L.R., Fossum, J.O., and Méheust, Y.: X-ray studies of interlayer water absorption and mesoporous water transport in a weakly hydrated clay. Phys. Rev. E 82, 036315 (2010).CrossRefGoogle Scholar
Hemmen, H., Alme, L.R., Fossum, J.O., and Méheust, Y.: Erratum: X-ray studies of interlayer water absorption and mesoporous water transport in a weakly hydrated clay. Phys. Rev. E 83, 019901 (2011).CrossRefGoogle Scholar
Kaviratna, P.D., Pinnavaia, T.J., and Schroeder, P.A.: Dielectric properties of smectite clays. J. Phys. Chem. Solids 57, 18971906 (1996).CrossRefGoogle Scholar
Fossum, J.O.: Physical phenomena in clays. Physica A 270, 270277 (1999).CrossRefGoogle Scholar
Fossum, J.O.: Flow of clays. Eur. Phys. J. Spec. Top. 204, 4156 (2012).CrossRefGoogle Scholar
Hansen, E.L., Hemmen, H., Fonseca, D.M., Coutant, C., Knudsen, K.D., Plivelic, T.S., Bonn, D., and Fossum, J.O.: Swelling transition of a clay induced by heating. Sci. Rep. 2, 618 (2012).CrossRefGoogle ScholarPubMed
Wang, B., Zhou, M., Rozynek, Z., and Fossum, J.O.: Electrorheological properties of organically modified nanolayered laponite: Influence of intercalation, adsorption and wettability. J. Mater. Chem. 19, 18161828 (2009).CrossRefGoogle Scholar
Rozynek, Z., Zacher, T., Janek, M., Čaplovičová, M., and Fossum, J.O.: Electric-field-induced structuring and rheological properties of kaolinite and halloysite clays. Appl. Clay Sci. 7778, 19 (2013).CrossRefGoogle Scholar
Rozynek, Z., Wang, B., Fossum, J.O., and Knudsen, K.D.: Dipolar structuring of organically modified fluorohectorite clay particles. Eur. Phys. J. E 35, 9 (2012).CrossRefGoogle ScholarPubMed
Rozynek, Z., Mauroy, H., Castberg, R.C., Knudsen, K.D., and Fossum, J.O.: Dipolar ordering of clay particles in various carrier fluids. Rev. Cub. Fis. 29, 1E37–41 (2012).Google Scholar
Silva, G.J., Fossum, J.O., DiMasi, E., Måløy, K.J., and Lutnæs, S.B.: Synchrotron x-ray scattering studies of water intercalation in a layered synthetic silicate. Phys. Rev. E 66, 011303 (2002).CrossRefGoogle Scholar
De Gennes, P.G.: The Physics of Liquid Crystals (Clarendon Press, Oxford, 1979).Google Scholar
Maier, W. and Saupe, A.: Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes. Z. Naturforsch. A 13, 564 (1958).CrossRefGoogle Scholar
Lemaire, B.J., Panine, P., Gabriel, J.C.P., and Davidson, P.: The measurement by SAXS of the nematic order parameter of laponite gels. Europhys. Lett. 59, 5561 (2002).CrossRefGoogle Scholar
Bihannic, I., Baravian, C., Duval, J.F.L., Paineau, E., Meneau, F., Levitz, P., de Silva, J.P., Davidson, P., and Michot, L.J.: Orientational order of colloidal disk-shaped particles under shear-flow conditions: Rheological-small-angle x-ray scattering study. J. Phys. Chem. B 114, 1634716355 (2010).CrossRefGoogle ScholarPubMed
Dozov, I., Paineau, E., Davidson, P., Antonova, K., Baravian, C., Bihannic, I., and Michot, L.J.: Electric-field-induced perfect anti-nematic order in isotropic aqueous suspensions of a natural Beidellite clay. J. Phys. Chem. B 115, 77517765 (2011).CrossRefGoogle ScholarPubMed
Castberg, R.C., Rozynek, Z., Fossum, J.O., Måløy, K.J., Dommersnes, P., and Flekkøy, E.G.: Clay alignment in electric fields. Rev. Cub. Fis. 29, 1E17–19 (2012).Google Scholar
Tenorio, R.P., Engelsberg, M., Fossum, J.O., and da Silva, G.J.: Intercalated water in synthetic fluorhectorite clay. Langmuir 26, 97039709 (2010).CrossRefGoogle ScholarPubMed
Tambach, T.J., Bolhuis, P.G., Hensen, E.J.M., and Smith, B.: Hysteresis in clay swelling induced by hydrogen bonding: Accurate prediction of swelling states. Langmuir 22, 12231234 (2006).CrossRefGoogle ScholarPubMed
Michels, L.E., Hemmen, H., Droppa Junior, R., Grassi, G., Silva, G.J., and Fossum, J.O.: Synchrotron x-ray scattering studies of Li-fluorohectorite synthetic clay: Random intercalation states. In Proceedings of 2nd International Workshop on Complex Physical Phenomena in Materials, J.O. Fossum and G.L. Vasconcelos, eds. complexphysics.org, 2012; p. 3134.Google Scholar
DiMasi, E., Fossum, J.O., and da Silva, G.J.: Synchrotron x-ray study of hydration dynamics in the synthetic swelling clay Na-fluorohectorite. In Proceedings of the 12th International Clay Conference, Argentina, Dominguez, E., Mas, G.R. and Cravero, F., eds. Elsevier Science BV: Amsterdam, Netherlands, 2003.Google Scholar
Wada, N., Hines, D.R., and Ahrenkiel, S.P.: X-ray diffraction studies of hydration transitions in Na vermiculite. Phys. Rev. B 41, 1289512901 (1990).CrossRefGoogle ScholarPubMed
Mooney, R.W., Keenan, A.G., and Wood, L.A.: Adsorption of water vapor by montmorillonite. Effect of exchangeable ions and lattice swelling as measured by x-ray diffraction. J. Am. Chem. Soc. 74, 13711374 (1952).CrossRefGoogle Scholar
Løvoll, G., Sandnes, B., Méheust, Y., Måløy, K.J., Fossum, J.O., da Silva, G.J., Mundim, M.S.P., Droppa, R. Jr., and Fonseca, D.M.: Dynamics of water intercalation fronts in a nano-layered synthetic silicate: A synchrotron x-ray scattering study. Physica B 370, 9098 (2005).CrossRefGoogle Scholar
Strobl, G.: The Physics of Polymers, 2nd ed. (Springer, New York, NY, 1997), pp. 143144.CrossRefGoogle Scholar
Sirota, E., King, H., Singer, D., and Shao, H.: Rotator phases of the normal alkanes: An x-ray scattering study. J. Chem. Phys. 98, 58095824 (1993).CrossRefGoogle Scholar
Ungar, G.: Structure of rotator phases in n-alkanes. J. Phys. Chem. 87, 689695 (1983).CrossRefGoogle Scholar
Nowak, M.J. and Severtson, S.J.: Dynamic mechanical spectroscopy of plastic crystalline states in n-alkane systems. J. Mater. Sci. 36, 41594166 (2001).CrossRefGoogle Scholar
Smith, A.E.: The crystal structure of the normal paraffin hydrocarbons. J. Chem. Phys. 21, 22292231 (1953).CrossRefGoogle Scholar
Supplementary material: File

Rozynek Supplementary Material

Figures S1-S4

Download Rozynek Supplementary Material(File)
File 882.7 KB