Article contents
Effects of the pyromellitic dianhydride cathode interfacial layer on characteristics of organic solar cells based on poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl C61 butyric acid methyl ester
Published online by Cambridge University Press: 31 January 2011
Abstract
This study examined the performance of poly(3-hexylthiophene-2,5-diyl)(P3HT)- and [6,6]-phenyl C61 butyric acid methyl ester (PCBM)-based organic solar cells (OSCs) with a pyromellitic dianhydride (PMDA) cathode interfacial layer between the active layer and cathode. The effect of inserting the cathode interfacial layer with different thicknesses was investigated. For the OSC samples with a 0.5 nm thick PMDA layer, the power conversion efficiency (PCE) was approximately 2.77% under 100 mW/cm2 (AM1.5) simulated illumination. It was suggested that the PMDA cathode interfacial layer acts as an exciton blocking layer, leading to an enhancement of the OSC performance.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
REFERENCES
- 4
- Cited by