Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T02:57:34.095Z Has data issue: false hasContentIssue false

Effects of surface charging treatment on outer and inner surfaces of a nanoporous carbon

Published online by Cambridge University Press:  31 January 2011

Weiyi Lu
Affiliation:
Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085
Aijie Han
Affiliation:
Department of Chemistry, University of Texas–Pan America, Edinburg, Texas 78539
Hyuck Lim
Affiliation:
Program of Materials Science & Engineering, University of California–San Diego, La Jolla, California 92093
Yu Qiao*
Affiliation:
Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085; and Program of Materials Science & Engineering, University of California–San Diego, La Jolla, California 92093
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

As the outer surface of a nanoporous carbon is treated with 16-mercaptohexadecanoic acid, the carbon particles can form a stable suspension in water. When the water phase is compressed, the liquid infiltration behavior in the nanopores becomes significantly different from that of untreated material, suggesting that the inner surface is also modified. After the treatment, the infiltration pressure does not decrease. Therefore, the surface-chain configurations at the inner and outer surfaces must be different, which explains the variations in infiltration pressure and volume.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kim, J.B., Grate, J.W., and Wang, P.: Nanobiocatalysis and its potential applications. Trends Biotechnol. 26, 639 (2008).CrossRefGoogle ScholarPubMed
2Zukal, A.: Recent trends in the synthesis of nanoporous materials. Chem. Listy 101, 208 (2007).Google Scholar
3Logar, N.Z. and Kaucic, V.: Nanoporous materials: From catalysis and hydrogen storage to wastewater treatment. Acta Chim. Slov. 53, 117 (2006).Google Scholar
4Dubbeldam, D. and Snurr, R.Q.: Recent developments in the molecular modeling of diffusion in nanoporous materials. Mol. Simul. 33, 305 (2007).CrossRefGoogle Scholar
5Polarz, S. and Smarsly, B.: Nanoporous materials. J. Nanosci. Nanotechnol. 2, 581 (2002).CrossRefGoogle ScholarPubMed
6Han, A., Lu, W., Punyamurtula, V.K., Kim, T., and Qiao, Y.: Temperature variation in liquid infiltration and defiltration in a MCM41. J. Appl. Phys. 105, 024309 (2009).CrossRefGoogle Scholar
7Han, A., Punyamurtula, V.K., and Qiao, Y.: Effects of cation size on infiltration and defiltration pressures of a MCM-41. Appl. Phys. Lett. 92, 153117 (2008).Google Scholar
8Han, A., Chen, X., and Qiao, Y.: Effects of the addition of electrolyte on liquid infiltration in a hydrophobic nanoporous silica gel. Langmuir 24, 7044 (2008).CrossRefGoogle Scholar
9Surani, F.B. and Qiao, Y.: An energy absorbing polyelectrolyte gel matrix composite material. Composites Part A 37, 1554 (2006).CrossRefGoogle Scholar
10Kong, X., Surani, F.B., and Qiao, Y.: Effects of addition of ethanol on the infiltration pressure of a mesoporous silica. J. Mater. Res. 20, 1042 (2005).CrossRefGoogle Scholar
11Liu, L., Qiao, Y., and Chen, X.: Pressure driven water infiltration into carbon nanotube: The effect of applied charges. Appl. Phys. Lett. 92, 101927 (2008).CrossRefGoogle Scholar
12Han, A., Punyamurtula, V.K., Kim, T., and Qiao, Y.: The upper limit of energy density of nanoporous materials functionalized liquid. J. Mater. Eng. Perform. 17, 326 (2008).CrossRefGoogle Scholar
13Punyamurtula, V.K., Han, A., and Qiao, Y.: An experimental investigation on a nanoporous carbon functionalized liquid damper. Philos. Mag. Lett. 86, 829 (2006).CrossRefGoogle Scholar
14Han, A., Punyamurtula, V.K., and Qiao, Y.: Infiltration of liquid metals in a nanoporous carbon. Philos. Mag. Lett. 88, 67 (2008).CrossRefGoogle Scholar
15Ibach, H.: Physics of Surfaces and Interfaces (Springer, New York, 2006).Google Scholar
16Han, A. and Qiao, Y.: Controlling infiltration pressure of a nanoporous silica gel via surface treatment. Chem. Lett. (Jpn.) 36, 882 (2007).CrossRefGoogle Scholar
17Han, A., Chen, X., and Qiao, Y.: Effects of the addition of electrolyte on liquid infiltration in a hydrophobic nanoporous silica gel. Langmuir 24, 7044 (2008).CrossRefGoogle Scholar
18Chen, X., Cao, G., Han, A., Punyamurtula, V.K., Liu, L., Culligan, P.J., Kim, T., and Qiao, Y.: Nanoscale fluid transport: Size and rate effects. Nano Lett. 8, 2988 (2008).CrossRefGoogle ScholarPubMed
19Cao, G.X., Qiao, Y., Zhou, Q.L., and Chen, X.: Water infiltration behaviors in carbon nanotubes under quasistatic and dynamic loading conditions. Mol. Simul. 34, 1267 (2008).CrossRefGoogle Scholar
20Han, A., Punyamurtula, V.K., and Qiao, Y.: Heat generation associated with pressure induced infiltration in a nanoporous silica gel. J. Mater. Res. 23, 1902 (2008).CrossRefGoogle Scholar
21Qiao, Y., Punyamurtula, V.K., Han, A., Kong, X., and Surani, F.B.: Temperature dependence of working pressure of a nanoporous liquid spring. Appl. Phys. Lett. 89, 251905 (2006).CrossRefGoogle Scholar
22Haile, J.M.: Molecular Dynamics Simulation (John Wiley & Sons, New York, 1992).Google Scholar
23Brito, R., Tremont, R., Feliciano, O., and Cabrera, C.R.: Chemical derivatization of self-assembled 3-mercaptopropionic and 16-mercaptohexadecanoic acids at platinum surfaces with 3-amino-propyltrimethoxysilane: A spectroscopic and electrochemical study. J. Electroanal. Chem. 540, 53 (2003).CrossRefGoogle Scholar
24Tang, C.S., Dusseiller, M., and Makohliso, S.: Dynamic, electronically switchable surfaces for membrane protein microarrays. Anal. Chem. 78, 711 (2006).CrossRefGoogle ScholarPubMed
25Chen, G., McCandless, G.T., and McCarley, R.L.: Integration of large-area polymer nanopillar arrays into microfluidic devices using in situ polymerization cast molding. Lab Chip 7, 1424 (2007).Google ScholarPubMed
26Hiemenz, P.C. and Rajagopalan, R.: Principles of Colloid and Surface Chemistry (Marcel Dekker, New York, 1997).Google Scholar