Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T01:02:54.289Z Has data issue: false hasContentIssue false

Effects of static thermal aging and thermal cycling on the microstructure and shear strength of Sn95.5Ag3.8Cu0.7 solder joints

Published online by Cambridge University Press:  31 January 2011

Shawkret Ahat
Affiliation:
Daimler Chrysler SIM Technology Co.Ltd, Shanghai 200050, People's Republic of China
Mei Sheng
Affiliation:
Daimler Chrysler SIM Technology Co.Ltd, Shanghai 200050, People's Republic of China
Le Luo
Affiliation:
Daimler Chrysler SIM Technology Co.Ltd, Shanghai 200050, People's Republic of China
Get access

Abstract

The microstructure and shear strength changes of SnAgCu/Cu and SnAgCu/Ni–P/Cu surface mount solder joints during thermal aging at 150 °C and thermal cycling between ?40 and 150 °C were investigated. The reaction rate between SnAgCu and Cu is higher than that between SnAgCu and Ni–P. After long aging time, the SnAgCu/Cu interface becomes the weakest region in the SnAgCu/Cu solder joint, whereas the shear-force-induced cracks in the SnAgCu/Ni–P solder joint appear at the interface of Ni–P/Cu. During thermal cycling, cracks develop in both solder joints and the shear strength decreases. After extensive thermal cycling, the Ni–P layer separates from the Cu substrate and the shear strength of the SnAgCu/Ni–P solder joint decreases drastically.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Tomlinson, W.J. and Fullylove, A., J. Mater. Sci. 27, 5777 (1992).CrossRefGoogle Scholar
2Kang, S.K. and Sarkhel, A.K., J. Electron. Mater. 23, 701 (1994).CrossRefGoogle Scholar
3Hwang, J.S. and Vorgas, R.M., Soldering Surface Mount Technol. 5, 38 (1990).CrossRefGoogle Scholar
4Poon, N.M., Lawrence Wu, C.M., Lai, Joseph K.L., and Chan, Y.C., IEEE Trans. Comp. Packag. Manuf. Technol. 23, 708 (2000).Google Scholar
5Kariya, Y. and Otsuka, M., J. Electron. Mater. 27, 1229 (1998).CrossRefGoogle Scholar
6McCormack, M. and Jin, S., J. Electron. Mater. 23, 715 (1994).CrossRefGoogle Scholar
7Kariya, Y. and Otsuka, M., J. Electron. Mater. 27, 866 (1998).CrossRefGoogle Scholar
8Ylijoki, T.L., Steen, H., and Forsten, A., IEEE Trans. Comp. Packag. Manuf. Technol. 20, 194 (1997).CrossRefGoogle Scholar
9Foley, J.C., Gickler, A., Leprevost, F.H., and Brown, D., J. Electron. Mater. 29, 1258 (2000).CrossRefGoogle Scholar
10Pratt, R.E., Stromseold, E.I., and Quesnel, D.J., IEEE Trans. Comp. Packag. Manuf. Technol. 19, 134 (1996).CrossRefGoogle Scholar
11Tu, P.L., Chan, Y.C., and Lai, J.K.L., IEEE Trans. Comp. Packag. Manuf. Technol. 20, 87 (1997).CrossRefGoogle Scholar
12Chan, Y.C., Tu, P.L., So, A.C.K., and Kai, J.K.L., IEEE Trans. Comp. Packag. Manuf. Technol. 20, 463 (1997).CrossRefGoogle Scholar
13Wei, Y.Y. and Duh, J.G., J. Mater. Sci. Mater. Electron. 9, 373 (1998).CrossRefGoogle Scholar
14Keller, H.N., IEEE Trans. Comp. Hybrids Manuf. Technol. 9, 433 (1986).CrossRefGoogle Scholar
15Graham, A.H., Lindsay, R.W., and Read, H.J., J. Electrochem. Soc. 112, 401 (1965).CrossRefGoogle Scholar
16Lin, K.L. and Lai, P.J., J. Electrochem. Soc. 136, 3803 (1989).CrossRefGoogle Scholar
17Sigelko, J., Choi, S., Subramanian, K.N., and Lucas, J.P., J. Elec-tron. Mater. 29, 1307 (2000).CrossRefGoogle Scholar
18Korhonen, T.M., Su, P., Hong, S.J., Korhonen, M.A., and Li, C.Y., J. Electron. Mater. 29, 1194 (2000).CrossRefGoogle Scholar
19Choi, S., Subramanian, K.N., Lucas, J.P., and Bieler, T.R., J. Elec-tron. Mater. 29, 1249 (2000).CrossRefGoogle Scholar
20Hansen, P.M., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 52.Google Scholar
21Yang, W. and Messler, R.W., J. Electron. Mater. 23, 765 (1994).CrossRefGoogle Scholar
22Lee, C.Y. and Lin, K.L., Thin Solid Films 249, 201 (1994).CrossRefGoogle Scholar
23Tomlinson, W.J. and Rhodes, H.G., J. Mater. Sci. 22, 1769 (1987).CrossRefGoogle Scholar
24Young, C.D. and Duh, J.G., IEEE Trans. Comp. Packag. Manuf. Technol. A21, 433 (1998).Google Scholar
25Ahat, S., Du, L.G., Mei, S., and Luo, L., J. Electron. Mater. 29, (2000).CrossRefGoogle Scholar
26Bulluffi, R.W. and Seigle, L.L., Acta Metall. 5, 449 (1957).CrossRefGoogle Scholar