Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T18:34:59.229Z Has data issue: false hasContentIssue false

Effects of Mg substitution on microstructure and electrical properties of NiMn2−xMgxO4 NTC ceramics

Published online by Cambridge University Press:  10 February 2012

Jiangying Wang*
Affiliation:
Department of Materials Science and Engineering, China Jiliang University, 310018 Hangzhou, People’s Republic of China
Jingji Zhang
Affiliation:
Department of Materials Science and Engineering, China Jiliang University, 310018 Hangzhou, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

NiMn2−xMgxO4 (0 ≤ x ≤ 0.4) ceramics have been studied by powder x-ray diffraction (XRD), infrared (IR) spectroscopy, and thermogravimetric analysis. NiMn2−xMgxO4 ceramics are all single-phase with spinel structure. XRD and IR spectroscopy results indicate that Mg2+ ions occupy A- and B-site of spinel lattice, which inhibits the formation of cation vacancies. Moreover, Mg2+ substitution enhances the tolerance of the oxidation in air. As a result, Mg substitution leads to a significant increase in ρ25, temperature coefficient of resistivity B25/85, and activation energy, which improves the aging property of NiMn2−xMgxO4 negative temperature coefficient thermistors.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fagan, J.G. and Amarkoon, V.R.W.: Reliability and reproducibility of ceramic sensors: Part I NTC thermistor. Am. Ceram. Soc. Bull. 72, 70 (1993).Google Scholar
2.Wang, W.M., Liu, X.C., Gao, F., and Tian, C.S.: Synthesis of nanocrystalline Ni1Co0.2Mn1.8O4 powders for NTC thermistor by a gel auto-combustion process. Ceram. Int. 33, 459 (2007).CrossRefGoogle Scholar
3.Brabers, V.A.M. and Terhell, J.: Electrical conductivity and cation valencies in nickel manganite. Phys. State Sol. A 69, 325 (1982).CrossRefGoogle Scholar
4.Austin, I.G. and Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41 (1969).CrossRefGoogle Scholar
5.Jagtap, S., Rane, S., Gosavi, S., and Amalnerkar, D.: Preparation, characterization and electrical properties of spinel-type environment friendly thick film NTC thermistors. J. Eur. Ceram. Soc. 28, 2501 (2008).CrossRefGoogle Scholar
6.Park, K., Lee, J.K., Kim, S.J., Seo, W.S., Cho, W.S., Lee, C.W., and Nahm, S.: The effect of Zn on the microstructure and electrical properties of Mn1.17−xNi0.93Co0.9ZnxO4 (0 ≤ x≤ 0.075) NTC thermistors. J. Alloy. Comp. 467, 310 (2009).CrossRefGoogle Scholar
7.Metzmacher, C., Mikkenie, R., and Groen, W.A.: Indium-containing ceramics with negative temperature coefficient characteristics. J. Eur. Ceram. Soc. 20, 997 (2000).CrossRefGoogle Scholar
8.Gillot, B., Lorimier, J., Bernard, F., Nivoix, V., Douard, S., and Tailhades, Ph.: Thermal behavior and cation distribution in nanosized Mo-Co ferrite spinels Mo0.5CoyFe2.5-yO4 (0 ≤ y ≤ 1) studied by DTG, FT-IR and DC conductivity. Mater. Chem. Phys. 61, 199 (1999).CrossRefGoogle Scholar
9.Park, K. and Lee, J.K.: Mn-Ni-Co-Cu-Zn-O NTC thermistors with high thermal stability for low resistance applications. Scr. Mater. 57, 329 (2007).CrossRefGoogle Scholar
10.Park, K. and Lee, J.K.: The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95−xNi0.45Co0.15Cu0.45ZnxO4 (0 ≤ x ≤ 0.3) NTC thermistors. J. Alloy. Comp. 475, 513 (2009).CrossRefGoogle Scholar
11.Jagtap, S., Rane, S., Aiyer, R., Gosavi, S., and Amalnerkar, D.: Study of microstructure, impedance and dc electrical properties of RuO2-spinel based screen printed ‘green’ NTC thermistor. Curr. Appl. Phys. 10, 1156 (2010).CrossRefGoogle Scholar
12.Park, K., Kim, S.J., Kim, J.G., and Nahm, S.: Structural and electrical properties of MgO-doped Mn1.4Ni1.2Co0.4-xMgxO4 (0 ≤ x ≤ 0.25) NTC thermistors. J. Eur. Ceram. Soc. 27, 2009 (2007).CrossRefGoogle Scholar
13.Kustova, G.N., Burgina, E.B., Volkova, G.G., Yurieva, T.M., and Plyasova, L.M.: IR spectroscopic investigation of cation distribution in Zn–Co oxide catalysts with spinel type structure. J. Mol. Catal. Chem. 158, 293 (2000).CrossRefGoogle Scholar
14.Wang, Z.B., Zhao, C.H., Yang, P.H., Winnubst, A.J.A., and Chen, C.S.: X-ray diffraction and infrared spectra studies of FexMn2.34−xNi0.66O4 (0 < x < 1) NTC ceramics. J. Eur. Ceram. Soc. 26, 2833 (2006).CrossRefGoogle Scholar
15.Fritsch, S., Sarrias, J., Brieu, M., Couderc, J.J., Baudour, J.L., Snoeck, E., and Rousset, A.: Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors. Solid State Ion. 109, 229 (1998).CrossRefGoogle Scholar
16.Poix, P.: Liaisons interatorniques et propriktds physiques des 268 C, 1139, 1969. composis rniniraus. Sedes, Paris 82 (1968) CR Acad, Sci.Google Scholar
17.Gillot, B., Guendouzi, M.E., Kharroubi, M., Tailhades, P., Metz, R., and Rousset, A.: Phase transformation-related kinetic in the oxidation of a manganese mixed oxide with a spinel structure. Mater. Chem. Phys. 24, 199 (1989).CrossRefGoogle Scholar
18.Csete de Györgyfalva, G.D.C. and Reaney, I.M.: Decomposition of NiMn2O4 spinel: An NTC thermistor material. J. Eur. Ceram. Soc. 21, 2145 (2001).CrossRefGoogle Scholar
19.Waldron, R.D.: Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955).CrossRefGoogle Scholar
20.Ferreira, V.M., Baptista, J.L., Kamba, S., and Petzelt, J.: Dielectric spectroscopy of MgTiO3-based ceramics in the 109–1014 Hz region. J. Mater. Sci. 28, 5894 (1993).CrossRefGoogle Scholar
21.Varghese, J.M., Seema, A., and Dayas, K.R.: Microstructural, electrical and reliability aspects of chromium doped Ni-Mn-Fe-O NTC thermistor materials. Mater. Sci. Eng., B. 149, 47 (2008).CrossRefGoogle Scholar
22.Dorris, S.E. and Mason, T.O.: Electrical properties and cation valencies in Mn3O4. J. Am. Ceram. Soc. 71, 379 (1988).CrossRefGoogle Scholar
23.Basu, A., Brinkman, A.W., and Schmidt, R.: Effect of oxygen partial pressure on the NTCR characteristics of sputtered NixMn3−xO4+δ thin films. J. Eur. Ceram. Soc. 24, 1247 (2004).CrossRefGoogle Scholar
24.Metz, R.: Electrical properties of NTC thermistors made of manganite ceramics of general spinel structure: Mn3−xxMxNx O4 (0 ≤ x + x′ ≤ 1; M and N being Ni, Co or Cu). Aging phenomenon study. J. Mater. Sci. 35, 4705 (2000).CrossRefGoogle Scholar