Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T09:58:18.816Z Has data issue: false hasContentIssue false

Effects of mesoporous structure on grain growth of nanostructured tungsten oxide

Published online by Cambridge University Press:  03 March 2011

Lay Gaik Teoh
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
Jiann Shieh
Affiliation:
National Nano Device Laboratories, Hsinchu, Taiwan, Republic of China
Wei Hao Lai
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
Min Hsiung Hon*
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
*
a) Address all correspondence to this author. e-mail address: [email protected]
Get access

Abstract

The effects of mesoporous structure on grain growth were investigated in this study. The synthesis was accomplished using block copolymer as the organic template and tungsten chloride as the inorganic precursor. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy, x-ray diffractometry (XRD), transmission electron microscopy, and N2 adsorption/desorption isotherms were used to characterize the microstructures obtained for different temperatures. TGA and XRD analyses demonstrate that copolymers were expelled at 150–250 °C, and mesoporous structure was stable up to 350 °C. The pore diameter and the surface area evaluated from the Barrett-Joyner-Halenda model and Brunauer–Emmett–Teller method indicated that the average pore diameter is 4.11 nm and specific surface area is 191.5 m2/g for 250 °C calcination. Arrhenius equation used to calculate the activation energy for grain growth demonstrates that the activation energy for grain growth was about 38.1 kJ/mol before mesostructure collapse and 11.3 kJ/mol after collapse. These results show evidence of two different mechanisms governing the process of grain growth. The presence of the pore can be related to the obstacle for grain growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Teoh, L.G., Hung, I.M., Shieh, J., Lai, W.H. andHon, M.H.: High sensitivity semiconductor NO2 gas sensor based on mesoporous WO3 thin film. Electrochem. Solid-State Lett 6, 108 (2003).CrossRefGoogle Scholar
2.Ozkan, E., Lee, S.H., Liu, P., Tracy, C.E., Tepehan, F.Z., Pitts, J.R. andDeb, S.K.: Electrochromic and optical properties of mesoporous tungsten oxide films. Solid State Ionics 149, 139 (2002).CrossRefGoogle Scholar
3.Cheng, W., Baudrin, E., Dunn, B. andZink, J.I.: Synthesis and electrochromic properties of mesoporous tungsten oxide. J. Mater. Chem. 11, 92 (2001).CrossRefGoogle Scholar
4.Santato, C., Odziemkowski, M., Ulmann, M. andAugustynski, J.: Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639 (2001).CrossRefGoogle ScholarPubMed
5.Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. andBeck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 1710 (1992).CrossRefGoogle Scholar
6.Forster, S. andAntonietti, M.: Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv. Mater. 10, 195 (1998).3.0.CO;2-V>CrossRefGoogle Scholar
7.Zhao, D., Huo, Q., Feng, J., Chmelka, B.F. andStucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024 (1998).CrossRefGoogle Scholar
8.Brinker, C.J., Lu, Y., Sellinger, A. andFan, H.: Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579 (1999).3.0.CO;2-R>CrossRefGoogle Scholar
9.Shieh, J., Feng, H.M., Hon, M.H. andJuang, H.Y.: WO3 and W-Ti-O thin film gas sensors prepared by sol-gel dip-coating. Sens. Actuators B 86, 75 (2002).CrossRefGoogle Scholar
10.Wu, N.L., Wang, S.Y. andRusakova, I.A.: Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxides. Science 285, 1375 (1999).CrossRefGoogle ScholarPubMed
11.Leite, E.R., Maciel, A.P., Weber, I.T., Lisboa-Filho, P.N., Longo, E., Paiva-Santos, C.O., Andrade, A.V.C., Pakoscimas, C.A., Maniette, Y. andSchreiner, W.H.: Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution. Adv. Mater. 14, 905 (2002).3.0.CO;2-D>CrossRefGoogle Scholar
12.Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F. andStucky, G.D.: Generalized syntheses of large-pore mesoporous metal oxides with nanocrystalline walls. Nature 396, 152 (1998).CrossRefGoogle Scholar
13.Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F. andStucky, G.D.: Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 11, 2813 (1999).CrossRefGoogle Scholar
14.Cullity, B.D.Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978)Google Scholar
15.Bellamy, L.J.: The Infrared Spectra of Complex Molecules, Vol. 1, 3rd ed. (Chapman Hall, New York, 1975).CrossRefGoogle Scholar
16.Li, G.J. andKawi, S.: Synthesis, characterization and sensing application of novel semiconductor oxides. Talanta 45, 759 (1998).CrossRefGoogle ScholarPubMed
17.Daniel, M.F., Desbat, B., Lassegues, J.C., Gerand, B. andFiglarz, M.: Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide hydrates. J. Solid State Chem. 67, 235 (1987).CrossRefGoogle Scholar
18.Krings, L.H.M. andTalen, W.: Wet chemical preparation and characterization of electrochromic WO3. Sol. Energy Mater. Sol. Cells 54, 27 (1998).CrossRefGoogle Scholar
19.Lee, B., Yamashita, T., Lu, D., Knodo, J.N. andDomen, K.: Single-crystal particles of mesoporous niobium-tantalum mixed oxide. Chem. Mater. 14, 867 (2002).CrossRefGoogle Scholar
20.Gregg, S.J. andSing, K.S.W.Adsorption, Surface Area and Porosity (Academic, London, U.K., 1982)Google Scholar
21.Jarcho, M., Bolen, C.H., Thomas, M.B., Bobick, J., Kay, J.F. andDoremus, R.H.: Hydroxyapatite synthesis and characterization in dense polycrystalline. J. Mater. Sci. 11, 2027 (1976).CrossRefGoogle Scholar
22.Shukla, S., Seal, S., Vij, R. andBandyopadhyay, S.: Reduced acitivation energy for grain growth in nanocrystalline yttria-stablized zirconia. Nano Lett. 3, 397 (2003).CrossRefGoogle Scholar
23.Ferroni, M., Guidi, V., Martinelli, G., Comini, E., Sberveglieri, G., Boscarino, D. andMea, G. Della: Electron microscopy and Rutherford backscattering study of nucleation and growth in nanosized W-Ti-O thin films. J. Appl. Phys. 88, 1097 (2000).CrossRefGoogle Scholar
24.Hynes, A.P., Doremus, R.H. andSiegel, R.W.: Sintering and characterization of nanophase zinc oxide. J. Am. Ceram. Soc. 85, 1979 (2002).CrossRefGoogle Scholar
25.Crepaldi, E.L., de, G.J., Soler-Illia, A.A., Bouchara, A., Grosso, D., Durand, D. andSanchez, C.: Controlled formation of cubic and hexagonal mesoporous yttria-zirconia and ceria-zirconia thin films exhibiting unprecedented thermal stability. Angew. Chem. Int. Ed. Engl. 42, 347 (2003).CrossRefGoogle Scholar