Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T19:39:41.891Z Has data issue: false hasContentIssue false

Effects of manganese addition on microstructure and press formability of hot-rolled Mg–Al–Zn alloy sheets

Published online by Cambridge University Press:  31 January 2011

Xinsheng Huang*
Affiliation:
Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan
Kazutaka Suzuki
Affiliation:
Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan
Akira Watazu
Affiliation:
Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan
Ichinori Shigematsu
Affiliation:
Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan
Naobumi Saito
Affiliation:
Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Differential speed rolling (DSR) has been carried out on AZ31 alloys with Mn additions of 0 to 0.6 wt% for investigating the effects of Mn on microstructure, texture, mechanical properties, and formability. The Al–Mn compounds were formed in the sample with a Mn addition of only 0.2 wt% because of its low solid-solubility limit. There were tiny differences among the DSR-processed AZ31 alloys with different Mn contents, while the AZ31 alloy without Mn addition exhibited a more homogeneous microstructure, a weaker basal texture intensity, and a much superior formability together with a larger likelihood of grain growth during annealing. The Mn dissolving in αMg matrix exerted a far stronger influence on the resulting properties compared with those existing in form of the Al–Mn compounds. The Mn solute atoms induced an increase in c/a ratio, which may suppress activity of nonbasal slips and in turn degrade the deformation capability.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Polmear, I.J.: Magnesium alloys and applications. Mater. Sci. Technol. 10, 1 1994CrossRefGoogle Scholar
2Hanawalt, J.D., Nelson, C.E., Peloubet, J.A.: Corrosion studies of Mg and its alloys. Trans. Am. Inst. Min. Eng. 147, 273 1942Google Scholar
3Emley, E.F.: Principles of Magnesium Technology Pergamon Oxford 1966 180–190Google Scholar
4Cao, P., StJohn, D.H., Qian, M.: The effect of manganese on the grain size of commercial AZ31 alloy. Mater. Sci. Forum 488–489, 139 2005CrossRefGoogle Scholar
5Cao, P., Qian, M., StJohn, D.H.: Effect of manganese on grain refinement of Mg-Al based alloys. Scr. Mater. 54, 1853 2006CrossRefGoogle Scholar
6Tamura, Y., Haitani, T., Kono, N.: Liquid solubility of manganese and its influence on grain size of Mg–Al alloys. Mater. Trans. 47, 1968 2006CrossRefGoogle Scholar
7Du, J., Yang, J., Kuwabara, M., Li, W., Peng, J.: Effects of manganese and/or carbon on the grain refinement of Mg–3Al alloy. Mater. Trans. 49, 139 2008CrossRefGoogle Scholar
8Laser, T., Nurnberg, M.R., Janz, A., Hartig, Ch., Letzig, D., Schmid-Fetzer, R., Bormann, R.: The influence of manganese on the microstructure and mechanical properties of AZ31 gravity die cast alloys. Acta Mater. 54, 3033 2006CrossRefGoogle Scholar
9Murai, T., Oguri, H., Matsuoka, S.I.: Effects of manganese contents on extruded magnesium alloys. Mater. Sci. Forum 488–489, 515 2005CrossRefGoogle Scholar
10Yoshida, Y., Lawrence, T., Sekine, C., Kamado, S., Kojima, Y.: Effect of Mn content on tensile properties of rolled AZ31 magnesium alloy sheet. J. Jpn. Inst. Met. 68, 412 2004 in JapaneseCrossRefGoogle Scholar
11Khan, S.A., Miyashita, Y., Mutoh, Y., Sajuri, Z.B.: Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys. Mater. Sci. Eng., A 420, 315 2006CrossRefGoogle Scholar
12Sajuri, Z.B., Miyashita, Y., Hosokai, Y., Mutoh, Y.: Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys. Int. J. Mech. Sci. 48, 198 2006CrossRefGoogle Scholar
13Yoo, M.H.: Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Trans. A 12, 409 1981CrossRefGoogle Scholar
14Obara, T., Yoshinaga, H., Morozumi, S.: {11¯2}〈¯1¯123〉 slip system in magnesium. Acta Metall. 21, 845 1973CrossRefGoogle Scholar
15Watanabe, H., Mukai, T., Ishikawa, K.: Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties. J. Mater. Sci. 39, 1477 2004CrossRefGoogle Scholar
16Watanabe, H., Mukai, T., Ishikawa, K.: Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy. J. Mater. Process. Technol. 182, 644 2006CrossRefGoogle Scholar
17Kim, W.J., Lee, J.B., Kim, W.Y., Jeong, H.T., Jeong, H.G.: Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by asymmetrical rolling. Scr. Mater. 56, 309 2007CrossRefGoogle Scholar
18Huang, X.S., Suzuki, K., Watazu, A., Shigematsu, I., Saito, N.: Mechanical properties of Mg–Al–Zn alloy with a tilted basal texture obtained by differential speed rolling. Mater. Sci. Eng., A 488, 214 2008CrossRefGoogle Scholar
19Huang, X.S., Suzuki, K., Watazu, A., Shigematsu, I., Saito, N.: Improvement of formability of Mg–Al–Zn alloy sheet at low temperatures using differential speed rolling. J. Alloys Compd. 2008 doi:10.1016/j.jallcom.2008.02.029Google Scholar
20Emley, E.F.: Principles of Magnesium Technology Pergamon Oxford 1966 965Google Scholar
21Ion, S.E., Humphreys, F.J., White, S.H.: Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metall. 30, 1909 1982CrossRefGoogle Scholar
22Koike, J., Kobayashi, T., Mukai, T., Watanabe, H., Suzuki, M., Maruyama, K., Higashi, K.: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51, 2055 2003CrossRefGoogle Scholar
23Humphreys, F.J., Hatherly, M.: Recrystallization and Related Annealing Phenomena Pergamon Oxford 1995 102Google Scholar
24Fujikawa, S.I.: Impurity diffusion of manganese in magnesium. J. Jpn. Inst. Light Metals 42, 826 1992 in JapaneseCrossRefGoogle Scholar
25Park, S.S., Oh, Y.S., Kang, D.H., Kim, N.J.: Microstructural evolution in twin-roll strip cast Mg–Zn–Mn–Al alloy. Mater. Sci. Eng., A 449–451, 352 2006Google Scholar
26Jones, H.: The effect of electron concentration on the lattice spacings in magnesium solid solutions. Philos. Mag. 41, 663 1950CrossRefGoogle Scholar
27Busk, R.S.: Lattice parameters of magnesium alloys. Trans. AIME 188, 1460 1950Google Scholar
28Hardie, D., Parkins, R.N.: Lattice spacing relationships in magnesium solid solutions. Philos. Mag. 43, 815 1959CrossRefGoogle Scholar
29Hehmann, F., Sommer, F., Predel, B.: Extension of solid solubility in magnesium by rapid solidification. Mater. Sci. Eng., A 125, 249 1990CrossRefGoogle Scholar
30Wazzan, A.R., Robinson, L.B.: Elastic constants of magnesium-lithium alloys. Phys. Rev. 155, 586 1967CrossRefGoogle Scholar
31Agnew, S.R., Yoo, M.H., Tome, C.N.: Application of texture simulation to understanding mechanical behavior of Mg and solid-solution alloys containing Li or Y. Acta Mater. 49, 4277 2001CrossRefGoogle Scholar
32Huang, X.S., Suzuki, K., Watazu, A., Shigematsu, I., Saito, N.: Microstructure and texture of Mg–Al–Zn alloy processed by differential speed rolling. J. Alloys Compd. 457, 408 2008CrossRefGoogle Scholar