Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T02:30:03.042Z Has data issue: false hasContentIssue false

Effects of gas blowing condition on formation of mixed halide perovskite layer on organic scaffolds

Published online by Cambridge University Press:  13 July 2017

Takeshi Gotanda*
Affiliation:
Corporate Research & Development Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582, Japan
Shigehiko Mori
Affiliation:
Corporate Research & Development Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582, Japan
Haruhi Oooka
Affiliation:
Corporate Research & Development Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582, Japan
Hyangmi Jung
Affiliation:
Corporate Research & Development Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582, Japan
Hideyuki Nakao
Affiliation:
Corporate Research & Development Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582, Japan
Kenji Todori
Affiliation:
Corporate Research & Development Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582, Japan
Yutaka Nakai
Affiliation:
Corporate Research & Development Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Perovskite solar cells are promising for realizing high power conversion efficiency (PCE) with low manufacturing costs, but efficient coating methods are needed for commercialization. Here, a gas blowing method was used to fabricate perovskite solar cells and was found to create a smooth perovskite layer and to prevent voids in large-area cells, when organic materials were used as scaffolds for forming the perovskite. A PCE of 13% in a 1 cm2 active area is achieved by tuning the band-gap energy of MAPbX3 via substitution of Br for I ions in X sites. Incorporation of a poly(3,4-ethylenedioxythiophene) hole transport layer with a higher work function increased the open circuit voltage of the solar cells. All layers of the cells were fabricated at low temperatures (<140 °C), which makes it possible to incorporate a polymer substrate for producing flexible solar cells and high-throughput fabrication.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sam Zhang

References

REFERENCES

Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle ScholarPubMed
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Levi, D.H., and Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 49). Prog. Photovoltaics 25, 3 (2017).Google Scholar
Sha, W.E.I., Ren, X., Chen, L., and Choy, W.C.H.: The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106, 221104 (2015).CrossRefGoogle Scholar
Service, R.F.: Perovskite solar cells gear up to go commercial. Science 354, 1214 (2016).Google Scholar
Ahn, N., Son, D-Y., Jang, I-H., Kang, S.M., Choi, M., and Park, N-G.: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696 (2015).Google Scholar
Koh, T.M., Shanmugam, V., Schlipf, J., Oesinghaus, L., Buschbaum, P.M., Ramakrishnan, N., Swamy, V., Mathews, N., Boix, P.P., and Mhaisalkar, S.G.: Nanostructuring mixed-dimensional perovskites: A route toward tunable, efficient photovoltaics. Adv. Mater. 28, 3653 (2016).Google Scholar
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014).Google Scholar
Huang, F., Dkhissi, Y., Huang, W., Xiao, M., Benesperi, I., Rubanov, S., Zhu, Y., Lin, X., Jiang, L., Zhou, Y., Gray-Weale, A., Etheridge, J., McNeill, C.R., Caruso, R.A., Bach, U., Spiccia, L., and Cheng, Y-B.: Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 10, 10 (2014).Google Scholar
Meng, L., You, J., Guo, T-F., and Yang, Y.: Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49, 155 (2016).Google Scholar
Li, X., Bi, D., Yi, C., Décoppet, J-D., Luo, J., Zakeeruddin, S.M., Hagfeldt, A., and Grätzel, M.: A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58 (2016).Google Scholar
Song, J., Zheng, E., Bian, J., Wang, X-F., Tian, W., Sanehirac, Y., and Miyasakac, T.: Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J. Mater. Chem. A 3, 10837 (2015).Google Scholar
Wang, Q., Dong, Q., Li, T., Gruverman, A., and Huang, J.: Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734 (2016).CrossRefGoogle ScholarPubMed
Gotanda, T., Mori, S., Matsui, A., and Oooka, H.: Effects of gas blowing condition on formation of perovskite layer on organic scaffolds. Chem. Lett. 45, 822 (2016).Google Scholar
Xia, B., Wu, Z., Dong, H., Xi, J., Wu, W., Lei, T., Xi, K., Yuan, F., Jiao, B., Xiao, L., Gongb, Q., and Hou, X.: Formation of ultrasmooth perovskite films toward, highly efficient inverted planar heterojunction solar cells by micro-flowing anti-solvent deposition in air. J. Mater. Chem. A 4, 6295 (2016).CrossRefGoogle Scholar
Lee, J-W., Seol, D-J., Cho, A-N., and Park, N-G.: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3 . Adv. Mater. 26, 4991 (2014).Google Scholar
Kulbak, M., Cahen, D., and Hodes, G.: How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452 (2015).Google Scholar
Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., Ma, T., and Hayase, S.: CH3NH3Sn x Pb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004 (2014).CrossRefGoogle Scholar
Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., and Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764 (2013).CrossRefGoogle ScholarPubMed
Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., and Snaith, H.J.: Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014).CrossRefGoogle Scholar
Saliba, M., Matsui, T., Domanski, K., Seo, J-Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J-P., Tress, W.R., Abate, A., Hagfeldt, A., and Grätzel, M.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206 (2016).CrossRefGoogle ScholarPubMed
Zimmermann, E., Ehrenreich, P., Pfadler, T., Dorman, J.A., Weickert, J., and Schmidt-Mende, L.: Erroneous efficiency reports harm organic solar cell research. Nat. Photonics 8, 669 (2014).Google Scholar
Jeng, J-Y., Chiang, Y-F., Lee, M-H., Peng, S-R., Guo, T-F., Chen, P., and Wen, T-C.: CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727 (2013).Google Scholar
Mori, S., Gotanda, T., Nakano, Y., Saito, M., Todori, K., and Hosoya, M.: Investigation of the organic solar cell characteristics for indoor LED light applications. Jpn. J. Appl. Phys. 54, 071602 (2015).Google Scholar
Nishi, H., Nagano, T., Kuwabata, S., and Torimoto, T.: Controllable electronic energy structure of size-controlled Cu2ZnSnS4 nanoparticles prepared by a solution-based approach. Phys. Chem. Chem. Phys. 16, 672 (2014).Google Scholar
MacDonald, B.I., Martucci, A., Rubanov, S., Watkins, S.E., Mulvaney, P., and Jasieniak, J.J.: Layer-by-layer assembly of sintered CdSe x Te1–x nanocrystal solar cells. ACS Nano 6, 5995 (2012).Google Scholar
Hwang, J., Kim, E-G., Liu, J., Bredas, J-L., Duggal, A., and Kahn, A.: Photoelectron spectroscopic study of the electronic band structure of polyfluorene and fluorene-arylamine copolymers at interfaces. J. Phys. Chem. C 111, 1378 (2007).Google Scholar
Ryu, S., Noh, J.H., Jeon, N.J., Kim, Y.C., Yang, W.S., Seo, J., and Seok, S.I.: Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 7, 2614 (2014).Google Scholar
Burschka, J., Pellet, N., Moon, S-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., and Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).Google Scholar
Lim, K., Kim, H-B., Jeong, J., Kim, H., Kim, J.Y., and Lee, T-W.: Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26, 6461 (2014).Google Scholar
Zuo, F., Williams, S.T., Liang, P-W., Chueh, C-C., Liao, C-Y., and Jen, A.K-Y.: Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 26, 6454 (2014).Google Scholar
Sugiyama, K., Ishii, H., Ouchi, Y., and Seki, Kazuhiko: Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and X-ray photoemission spectroscopies. J. Appl. Phys. 87, 295 (2000).CrossRefGoogle Scholar
Manders, J.R., Tsang, S-W., Hartel, M.J., Lai, T-H., Chen, S., Amb, C.M., Reynolds, J.R., and So, F.: Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 23, 2993 (2013).Google Scholar
Kim, J.H., Williams, S.T., Cho, N., Chueh, C-C., and Jen, A.K-Y.: Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv. Energy Mater. 5, 1401229 (2015).Google Scholar
Peisert, H., Knupfer, M., Zhang, F., Petr, A., Dunsch, L., and Fink, J.: Charge transfer and doping at organic/organic interfaces. Appl. Phys. Lett. 83, 3930 (2003).CrossRefGoogle Scholar
Koch, N., Elschner, A., Rabe, J.P., and Johnson, R.L.: Work function independent hole-injection barriers between pentacene and conducting polymers. Adv. Mater. 17, 330 (2005).Google Scholar
Marumoto, K., Fujimori, T., Ito, M., and Mori, T.: Charge formation in pentacene layers during solar-cell fabrication: Direct observation by electron spin resonance. Adv. Energy Mater. 2, 591 (2012).Google Scholar
Munir, R., Sheikh, A.D., Abdelsamie, M., Hu, H., Yu, L., Zhao, K., Kim, T., Tall, O., Li, R., and Smilgies, D-M.: Hybrid perovskite thin-film photovoltaics: In situ diagnostics and importance of the precursor solvate phases. Adv. Mater. 29, 1604113 (2017).Google Scholar
Shao, Y., Xiao, Z., Bi, C., Yuan, Y., and Huang, J.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).Google Scholar
Yang, Y., Yang, M., Li, Z., Crisp, R., Zhu, K., and Beard, M.C.: Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: Influence of exciton binding energy. J. Phys. Chem. Lett. 6, 4688 (2015).Google Scholar
Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., and Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).Google Scholar
Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Gratzel, M., and Han, L.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015).Google Scholar
Supplementary material: File

Gotanda supplementary material

Figures S1-S4

Download Gotanda supplementary material(File)
File 107.7 KB