Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T20:25:24.501Z Has data issue: false hasContentIssue false

Effects of Ba/Ti ratio on tetragonality, Curie temperature, and dielectric properties of solid-state-reacted BaTiO3 powder

Published online by Cambridge University Press:  03 October 2012

Che-Yuan Chang
Affiliation:
Department of Resources Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Ru-Li Wang
Affiliation:
Department of Resources Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Chi-Yuen Huang*
Affiliation:
Department of Resources Engineering, National Cheng Kung University, Tainan 70101, Taiwan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effects of the barium/titanium (Ba/Ti) ratio on the crystalline phase, Curie temperature, and dielectric properties of solid-state-reacted BaTiO3 powder were investigated. The experimental results showed that tetragonality decreased and the Curie temperature shifted to lower temperature when the Ba/Ti ratio strayed from 1.0. The BaTiO3 powder had the maximum dielectric constant when the Ba/Ti approaching 1.0.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hu, Y.H., Harmer, M.P., and Smyth, D.M.: Solubility of BaO in BaTiO3. J. Am. Ceram. Soc. 68, 372376 (1985).CrossRefGoogle Scholar
Lee, S., Randall, C.A., and Liu, Z.K.: Modified phase diagram for the barium oxide–titanium dioxide system for the ferroelectric barium titanate. J. Am. Ceram. Soc. 90, 25892594 (2007).CrossRefGoogle Scholar
Abelard, P.: Ceramic Materials: Processes, Properties and Applications (ISTE, London, 2007), pp. 98130.Google Scholar
Dufour, L.C., Monty, C., and Ervas, G.P.: Surfaces and Interfaces of Ceramic (Materials Kluwer Academic, Boston, MA, 1989), pp. 521533.CrossRefGoogle Scholar
Uchino, K., Sadanaga, E., and Hirose, T.: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 15551558 (1989).CrossRefGoogle Scholar
Begg, B.D., Vance, E.R., and Nowotny, J.: Effect of particle size on the room-temperature crystal structure of barium titanate. J. Am. Ceram. Soc. 77, 31863192 (1994).CrossRefGoogle Scholar
Freire, J.D. and Katiyar, R.S.: Lattice dynamics of crystals with tetragonal BaTiO3 structure. Phys. Rev. B: Condens. Matter 37, 20742085 (1988).CrossRefGoogle ScholarPubMed
Templeton, L.K. and Pask, J.A.: Formation of BaTiO3 from BaCO3 and TiO2 in air and in CO2. J. Am. Ceram. Soc. 42, 212216 (1959).CrossRefGoogle Scholar
Felgner, K.H., Muller, T., Langhammer, H.T., and Abicht, H.P.: On the formation of BaTiO3 from BaCO3 and TiO2 by microwave and conventional heating. Mater. Lett. 58, 19431947 (2004).CrossRefGoogle Scholar
Hwang, N.M., Yoon, S.H., Lee, J.H., and Kim, D.Y.: Effect of the liquid-phase characteristic on the microstructures and dielectric properties of donor- (niobium) and acceptor- (magnesium) doped barium titanate. J. Am. Ceram. Soc. 86, 8892 (2003).Google Scholar
Lee, J.K., Hong, K.S., and Jang, J.W.: Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics. J. Am. Ceram. Soc. 84, 20012006 (2001).CrossRefGoogle Scholar
Dutta, P.K., Gallagher, P.K., and Twu, J.: Raman spectroscopic and thermoanalytical studies of the reaction of Ba(OH)2 with anatase and titanium oxide gels. Chem. Mater. 4, 847851 (1992).CrossRefGoogle Scholar
Arlt, G., Hennings, D., and de With, G.: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 16191625 (1985).CrossRefGoogle Scholar
Huang, C.Y.: Thermal expansion behavior of sodium zirconium phosphate structure type materials. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 1990.Google Scholar
Lee, H.G. and Kim, H.G.: Ceramic particle size dependence of dielectric and piezoelectric properties of pizeoelectric ceramic-polymer composition. J. Appl. Phys. 67, 20242028 (1990).CrossRefGoogle Scholar
Petrovsky, V., Manohar, A., and Dogan, F.: Dielectric constant of particles determined by impedance spectroscopy. J. Appl. Phys. 100, 014102 (2006).CrossRefGoogle Scholar
Petrovsky, V., Petrovsky, T., Kamlapurkar, S., and Dogan, F.: Characterization of dielectric particles by impedance spectroscopy (Part I). J. Am. Ceram. Soc. 91, 18141816 (2008).CrossRefGoogle Scholar
Petrovsky, V., Petrovsky, T., Kamlapurkar, S., and Dogan, F.: Physical modeling and electrodynamic characterization of dielectric slurries by impedance spectroscopy (Part II). J. Am. Ceram. Soc. 91, 18171819 (2008).CrossRefGoogle Scholar
Petrovsky, V., Petrovsky, T., Kamlapurkar, S., and Dogan, F.: Dielectric constant of barium titanate powders near Curie temperature. J. Am. Ceram. Soc. 91, 35903592 (2008).CrossRefGoogle Scholar