Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T10:53:59.801Z Has data issue: false hasContentIssue false

Effects of an interposed Cu layer on the enhanced thermal stability of C49 TiSi2

Published online by Cambridge University Press:  31 January 2011

Ming-Jun Wang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
Wen-Tai Lin*
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
F. M. Pan
Affiliation:
National Nanodevice Laboratory, Hsinchu, Taiwan 300, Republic of China
*
Get access

Abstract

The effects of an interposed Cu layer and a surface Cu layer on the C49–C54 TiSi2 transformation temperature were studied. For the Ti/Cu/(100)Si samples the interposed Cu layer significantly enhanced the thermal stability of C49 TiSi2. The temperature for complete C49–C54 TiSi2 transformation was raised from 710 to 735 to 750 °C with the thickness of the interposed Cu layer increasing from 0 to 1.5 to 3.5 nm, correspondingly. Cu was insoluble in C54 TiSi2. For the Cu/Ti/(100)Si samples, the surface Cu layer did not at all enhance the thermal stability of the C49 phase. In the present study, the enhanced thermal stability of C49 TiCuxSi2–x can be attributed to its reduced electron/atom ratio and larger grain size relative to those of C49 TiSi2.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).CrossRefGoogle Scholar
2.Lasky, J.B., Nakos, J.S., Cain, O.J., and Geiss, P.J., IEEE Trans. Electron Devices ED–38, 262 (1991).CrossRefGoogle Scholar
3.Kuwano, H., Phillips, J.R., and Mayer, J.W., Appl. Phys. Lett. 56, 440 (1990).CrossRefGoogle Scholar
4.Okihara, M., Hirashita, N., Tai, K., Kageyama, M., Harada, Y., and Onoda, H., J. Appl. Phys. 85, 2988 (1999).Google Scholar
5.Chang, S.M., Huang, H.Y., Yang, H.Y., and Chen, L.J., Appl. Phys. Lett. 74, 224 (1999).CrossRefGoogle Scholar
6.Mann, R.W., Miles, G.L., Knotts, T.A., Rakowski, D.W., Clevenger, L.A., Harper, J.M., d'Heurle, F.M., and Cabral, C. Jr., Appl. Phys. Lett. 67, 3729 (1995).CrossRefGoogle Scholar
7.Kittl, J.A., Gribelyuk, M.A., and Samavedam, S.B., Appl. Phys. Lett. 73, 900 (1998).CrossRefGoogle Scholar
8.Mouroux, A., Zhang, S.L., Kaplan, W., Nygren, S., Oestling, M., and Petersson, C.S., Appl. Phys. Lett. 69, 975 (1996).CrossRefGoogle Scholar
9.Mouroux, A., Zhang, S.L., and Petersson, C.S., Phys. Rev. B 156, 10614 (1997).CrossRefGoogle Scholar
10.Cabral, C. Jr., Clevenger, L.A., Harper, J.M.E., d'Heurle, F.M., Roy, R.A., Saenger, K.L., Miles, G.L., and Mann, R.W., J. Mater. Res. 12, 304 (1997).Google Scholar
11.Cheng, S.L., Jou, J.J., Chen, L.J., and Tsui, B.Y., J. Mater. Res. 14, 2061 (1999).CrossRefGoogle Scholar
12.Cabral, C. Jr., Clevenger, L.A., Harper, J.M.E., d'Heurle, F.M., Roy, R.A., Lavoie, C., Saenger, K.L., Miles, G.L., Mann, R.W., and Nakos, J.S., Appl. Phys. Lett. 71, 3531 (1997).Google Scholar
13.Quintero, A., Libera, M., Cabral, C. Jr., Lavoie, C., and Harper, J.M.E., J. Mater. Res. 14, 4690 (1999).Google Scholar
14.Zhang, S.L. and d'Heurle, F.M., Appl. Phys. Lett. 76, 1831 (2000).CrossRefGoogle Scholar
15.Ohmi, S. and Tung, R.T., J. Appl. Phys. 86, 3655 (1999).CrossRefGoogle Scholar
16.Ma, Z., Allen, L.A., and Allman, D.D.J., J. Appl. Phys. 77, 4384 (1995).CrossRefGoogle Scholar
17.Zhang, S.L., d'Heurle, F.M., Lavoie, C., Cabral, C. Jr., and Harper, J.M.E., Appl. Phys. Lett. 73, 312 (1998).CrossRefGoogle Scholar
18.Bonoli, F., Iannuzzi, M., Miglio, L., and Meregalli, V., Appl. Phys. Lett. 73, 1964 (1998).CrossRefGoogle Scholar
19.Thomas, O., Delage, S., and d'Heurle, F.M., in Extended Abstracts, Vol. 88–1, Spring Meeting (Electrochemical Society, Pennington, NJ, 1988), p. 209.Google Scholar
20.Luo, J.S., Huang, J.C., Lin, W.T., Chang, C.Y., and Shih, P.S., Appl. Phys. Lett. 75, 3482 (1999).CrossRefGoogle Scholar
21.Huang, J.C., Luo, L.S., Lin, W.T., Chang, C.Y., and Shih, P.S., Semicond. Sci. Technol. 15, 941 (2000).CrossRefGoogle Scholar
22.Nickl, J.J. and Sprenger, H., Z. Metallkde. 60, 136 (1969).Google Scholar
23.Hong, S.Q. and Mayer, J.W., in Silicides, Germanides, and Their Interfaces, edited by Fathauer, R.W., Mantl, S., Schowalter, L.J., and Tu, K.N. (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, PA, 1994), p. 385.Google Scholar