Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T05:59:35.987Z Has data issue: false hasContentIssue false

Effect of Ta2O5 addition on the electrical and magnetic properties of nanocrystalline MgCuZn ferrites

Published online by Cambridge University Press:  12 September 2014

V. Seetha Rama Raju*
Affiliation:
CVR College of Engineering (Autonomous), Vastunagar, Ibrahimpatan, Andhra Pradesh 501 510, India; and Department of Physics, Osmania University, Hyderabad 500 007, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ta2O5 added MgCuZn ferrites are prepared by the microwave-hydrothermal (M-H) processing. The nanocrystalline ferrites are sintered to a temperature of 900 °C using conventional sintering (CS) and microwave sintering (MW) methods. The effect of Ta2O5 addition on the microstructure, d.c. resistivity, and Curie temperature of the ferrites has been studied. By the addition of Ta2O5 to MgCuZn ferrites, resistivity decreases without grain growth. The complex permittivity and complex permeability of the prepared samples were measured in the frequency range from 10 kHz to 1.8 GHz. The value of ε′ and tan δ for all the samples decreases from 10 to 100 kHz and almost remains constant up to 300 MHz and increases further by increasing the frequency up to 1 GHz. The µ* spectra are analyzed into two magnetization processes with a focus on the grain size of the ferrite samples. The present ferrites exhibited high values of permeability (>1000) in the frequency range of 10 kHz to 50 MHz. Then the values of permeability are found to decrease with an increase in frequency up to 180 MHz and finally, frequency dispersion occurred at 200 MHz.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Murthy, S.R.: Low temperature sintering of MgCuZn ferrite and its electrical and magnetic properties. Bull. Mater. Sci. 24, 379 (2001).CrossRefGoogle Scholar
Rezlescu, E., Rezlescu, N., Popa, P.D., Rezlescu, L., Pasnicu, C., and Craus, M.L.: Effect of copper oxide content on intrinsic properties of MgCuZn ferrite. Mater. Res. Bull. 33(6), 915 (1998).CrossRefGoogle Scholar
Rezlescu, N., Rezlescu, E., Popa, P.D., Craus, M.L., and Rezlescu, L.: Copper ions influence on the physical properties of a magnesium-zinc ferrite. J. Magn. Magn. Mater. 182, 199 (1998).Google Scholar
Hsu, J.Y., Ko, W.S., Shen, H.D., and Chen, C.J.: Low temperature fired NiCuZn ferrite. IEEE Trans. Magn. 30, 4875 (1994).Google Scholar
Rezlescu, N., Sachelarie, L., Rezlescu, L., and Popa, P.D.: Influence of PbO and Ta2O5 on some physical properties of MgCuZn ferrites. Cryst. Res. Technol. 36, 157 (2001).3.0.CO;2-9>CrossRefGoogle Scholar
Hsu, J.Y., Ko, W.S., and Chen, C.J.: The effect of V2O5 on the sintering of NiCuZn ferrite. IEEE Trans. Magn. 31, 3994 (1995).Google Scholar
Kwon, K.W., Park, I.S., Han, D.H., Kim, E.S., Ahn, S.T., and Lee, M.Y.: Ta2O5 capacitors for 1 G-bit DRAM and beyond. Int. Electron. Devices Meet., Tech. 94, 835 (1994).Google Scholar
Cava, R.F., Peck, W.F. Jr., and Krajiewski, J.J.: Enhancement of the dielectric constant of Ta2O5 through substitution with TiO2 . Nature 377, 215 (1995).CrossRefGoogle Scholar
Gan, J.Y., Cheng, Y.C., and Wu, T.B.: Dielectric property of (TiO2)x—(Ta2O5)1−x thin films. Appl. Phys. Lett. 72(3), 332 (1998).Google Scholar
Salam, K.M.A., Konish, H., Mizuno, M., Fukuda, H., and Nomura, S.: Electrical properties of (1-x)Ta2O5–xTiO2 crystalline thin films prepared by metalorganic decomposition. Jpn. J. Appl. Phys. 40, 1431 (2001).Google Scholar
Zdinarsic, A., Limpel, M., and Drofenik, M.: Effect of dopants on the magnetic properties of MnZn ferrites for high frequency power supplies. IEEE Trans. Magn. 31, 950 (1995).Google Scholar
Krishnaveni, T., Murthy, S.R., Gao, F., Lu, Q., and Komarneni, S.: Microwave hydrothermal synthesis of nanosize Ta2O5 added Mg-Cu-Zn ferrites. J. Mater. Sci. 41, 1471 (2006).CrossRefGoogle Scholar
Yamamoto, Y., Makino, A., and Nikaidou, T.: Electric and magnetic properties of Ta-doped polycrystalline Mn-Zn ferrite. In Proceedings of the 7th ICF, Bordeaux, September 3-6, 1996. J. Phys. IV, France 7, C1 (1997).Google Scholar
Naik, A. and Power, J.: Dependence of resistivity and activation energy of Ni-Zn ferrites on sintering temperature and porosity. Indian J. Pure Appl. Phys. 23, 436 (1985).Google Scholar
Ahmed, M., El Nimr, M., Tawfik, A., and Aboel Ata, A.: Effect of magnetic order on the conductivity in CoZn ferrites. J. Mater. Sci. Lett. 7, 639 (1988).Google Scholar
El Hiti, M.A.: The electrical conductivity in Ni containing Zn-Mg ferrites. J. Magn. Magn. Mater. 136, 136 (1994).Google Scholar
Reddy, P.V., Pratap, K., and Rao, T.S.: Electrical conductivity of some mixed ferrites at Curie point. Cryst. Res. Technol. 22, 977 (1987).Google Scholar
Islam, M.U., Ahmad, I., Abbas, T., and Chaudhry, M.A.: Effect of Cu substitution for Ni on the properties of NiFe2O3 system. Proceedings of the Sixth International Symposium on Advanced Materials, 1999; p. 155.Google Scholar
Islam, M.U., Ashraf Chaudhry, M., Abbas, T., and Umar, M.: Temperature dependent electrical resistivity of Co-Zn-Fe-O system. Mater. Chem. Phys. 48, 227 (1997).Google Scholar
El-Shabasy, M.: DC electrical properties of Zn-Ni ferrites. J. Magn. Magn. Mater. 172, 188 (1997).Google Scholar
Ghazanfar, U., Siddiqi, S.A., and Abbas, G.: Study of room temperature dc resistivity in comparison with activation energy and drift mobility of NiZn ferrites. Mater. Sci. Eng., B 118, 132 (2005).Google Scholar
Kishiro, K., Inoue, N., Chen, S.C., and Yoshimaru, M.: Structure and electrical properties of thin Ta2O5 deposited on metal electrodes. Jpn. J. Appl. Phys. 37, 1336 (1998).CrossRefGoogle Scholar
Bhosale, D.N., Choudari, N.D., Sawant, S.R., and Bakare, P.P.: Initial permeability studies on high density Cu-Mg-Zn ferrites. J. Magn. Magn. Mater. 173, 51 (1997).CrossRefGoogle Scholar
Liu, C.H., Chang, S.J., Chen, J.F., Chen, S.C., Lee, J.S., and Liaw, U.H.: High-quality ultrathin chemical-vapor-deposited Ta2O5 capacitors prepared by high-density plasma annealing. Mater. Sci. Eng., B 106, 234 (2004).CrossRefGoogle Scholar
Zaima, S., Furuta, T., and Yasuda, Y.: Conduction mechanism of leakage current in Ta2O5 films on Si prepared by LPCVD. J. Electrochem. Soc. 137, 2876 (1990).Google Scholar
Nakamura, T.: Snoek’s limit in high-frequency permeability of polycrystalline Ni–Zn, Mg–Zn, and Ni–Zn–Cu spinel ferrites. J. Appl. Phys. 88, 348 (2000).Google Scholar
Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951).CrossRefGoogle Scholar
Snoek, J.L.: Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s. Physica XIV 4, 207 (1948).CrossRefGoogle Scholar
Rado, G.T.: Magnetic spectra of ferrites. Rev. Mod. Phys. 25, 81 (1953).Google Scholar
Globus, A.: Influence of Granular Structure on the Dispersion of the Permeability, Ferrites (Thesis, Paris, 1963).Google Scholar
Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397 (1990).Google Scholar
Stergioun, C.A. and Zaspalis, V.: Analysis of the complex permeability of NiCuZn ferrites up to 1GHz with regard to Cu content and sintering temperature. Ceram. Int. 40, 357 (2014).CrossRefGoogle Scholar
Kalarus, J., Kogias, G., Holza, D., and Zaspalis, V.T.: High permeability–high frequency stable MnZn ferrites. J. Magn. Magn. Mater. 324, 2788 (2012).CrossRefGoogle Scholar
Wang, Z., Wu, M., Jin, S., Li, G., Maa, Y., and Wang, P.: Ni–Zn ferrite octahedral nanoparticles with high microwave permeability and high magnetic loss tangent. J. Magn. Magn. Mater. 344, 101 (2013).CrossRefGoogle Scholar
Tsakaloudi, V., Kogias, G., and Zaspalis, V.T.: Process and material parameters towards the design of fast firing cycles for high permeability MnZn ferrites. J. Alloys. Compd. 588, 222 (2014).Google Scholar