Published online by Cambridge University Press: 27 June 2016
Nanocomposites of 2024 aluminum–MoSi2 were prepared using mechanical alloying method followed by cold and hot pressing. Influences of volume fraction and distribution of nanosized MoSi2 reinforcement on mechanical properties of the composites were investigated. Microstructural characterization was carried out by scanning electron microscopy and energy dispersive spectroscopy. Mechanical properties of the nanocomposites were evaluated via hardness, wear, and also room and high temperature compression tests. The results showed that although the distribution of low content of MoSi2 nanoparticles in the matrix is homogeneous, with increasing the reinforcement fraction, the tendency of agglomeration is gradually intensified. The addition of reinforcing particles continuously brings a considerable enhancement in the mechanical properties of the matrix alloy but by exceeding a certain amount of the reinforcement fraction, this improvement reduces mainly because of the microstructure inhomogeneity. In addition, the nanocomposite with 3 vol% MoSi2 exhibits the optimum mechanical properties at ambient temperature.